Methodology for Scheduling Irrigation in the Mid-Atlantic Region

Long He

Department of Agricultural and Biological Engineering Fruit Research and Extension Center

January 31st, 2019

Importance of Irrigation

Necessity:

- Mandatory for dry and semi-arid area
- Supplemental for drought days/uneven rainfall in humid area

Proper irrigation:

- Increase yield
- Improve quality
- Conserve water
- Save energy
- Decrease fertilizer
- Reduce environmental impact

Irrigation Methods

Drip Irrigation

Overhead Sprinkler

Under Tree Sprinkler

Pivot Irrigation

Water apply rate:

$$ApRt = 231.1 \frac{EmitterFlow}{RowSpc \times EmitterSpc}$$

Irrigation Scheduling

Conventional method:

- Experience/observation
- Regular scheduling

Limitations:

- Not exactly reflect crop water needs
- Over irrigated or under irrigated
- Soil nutrients loss

From Google Image

More Precise Irrigation Scheduling Method Is Needed!

Precision Irrigation

When to Irrigate?

How much to Irrigate?

Consideration:

- Accuracy
- Initial cost
- Installation
- Data accessibility
- Compatible with Farm Practices
- Labor and energy saving
- Production improvement

Sensor-based irrigation scheduling

Row 1 and 5: Conventional

Row 2 and 6: ET based

Row 3 and 7: CWSI based

Row 4 and 8: Soil moisture based

- Infrared thermal sensors (one at a location)
- Soil water content sensors (three)
- Soil water potential sensors (two)

Orchard for test – Tall spindle Fuji trees

Schematic illustration of the experimental setup

Evapotranspiration (ET)-Based Irrigation

When Transpiration + Evaporation > Precipitation, *Irrigation* is needed.

Penman-Monteith Model (P-M)

- Reference ET₀
- Estimated ET = Kc x ETo

Parameters:

- Maximum air temperature
- Minimum air temperature
- Relative humidity
- Wind speed
- Solar radiation

Evapotranspiration (ET)-Based Irrigation

Soil Water Content-Based Irrigation

Soil Water Parameters (From: Texas A&M AgriLife Extension, E-618)

Soil Water Content-Based Irrigation

Precision Irrigation

Soil Water Content-Based Irrigation

Soil Water Potential-Based Irrigation

- Water potential
- Soil temperature
- Soil type
- Precipitation

Soil Water Potential-Based Irrigation

Soil Water Potential - Based Irrigation

Canopy Temperature – Based Irrigation

Crop Water Stress Index:

$$CWSI = \frac{\Delta T_m - \Delta T_l}{\Delta T_u - \Delta T_l}$$

- ΔT_m : Measured difference of canopy and air temperature
- ΔT_u : Difference of canopy and air temperature for non-transpiring canopy
- ΔT_l : Difference of canopy and air temperature for well-watered canopy
- Canopy Temperature
- Air temperature
- Relative humidity

- Wind speed
- Solar radiation

Canopy Temperature-Based Irrigation

Canopy Temperature-Based Irrigation

Comparation of the Tested Methods

	ET-Based	Soil Moisture-Based	Canopy Temperature- Based	Combination
Advantages	Easy to applyNo in-field sensorsLow cost	Direct reading of soil moistureLow cost	Direct measuring plant stressCan be little bit costly	 ET + Soil Moisture Soil moisture + Canopy Temperature
Challenges	 Estimated value Accumulating error Your own weather station 	Root regionSensor locationSoil typeReal canopy stress	Targeted area of sensorClimate (too humidity)	

Water use?

Crop production?

On-Going Studies

UAV-Based Sensing for Irrigation

UAV based thermal images

NDVI (Near Infrared and RGB) for crop water stress?

On-Going Studies

Automated Irrigation system with Real-Time Monitoring

On-Going Studies

An Example of Remote Control/Communication System

- ☐ Funding Agency
 - State Horticultural Association of Pennsylvania (SHAP)
- □ Project Team
 - Long He
 - Daeun Choi
 - Tara Baugher/Daniel Weber
 - James Schupp
- ☐ Field Setup/Data Acquisition
 - Alex McCoy
 - Lihua Zeng

Precision & Automated Agriculture

Thank you!

