Bitter Rot of Apple: Fungal Species In Pennsylvania & Managing Fungicide Resistance

Phillip Martin

Ph.D. Candidate Penn State University Department of Plant Pathology and Environmental Microbiology Fruit Research and Extension Center

Mid-Atlantic Fruit & Vegetable Convention

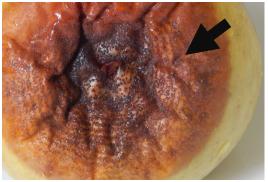
January 30th, 2019

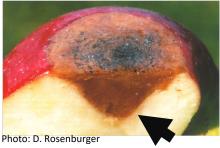
Photo: P. Martin

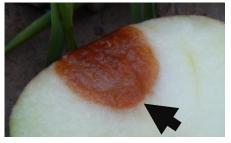
Presentation outline

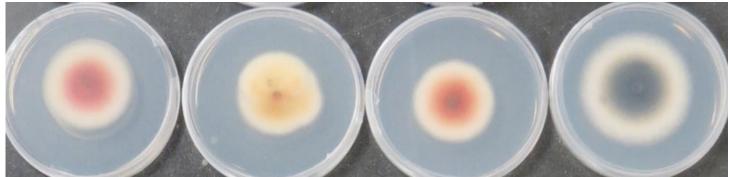
- What fungi cause bitter rot
- How the fungi works in nature
- Research
 - Bitter rot causing species in PA
 - Fungicide sensitivity assays: In the lab
 - Fungicide efficacy: In the field
 - Management recommendations

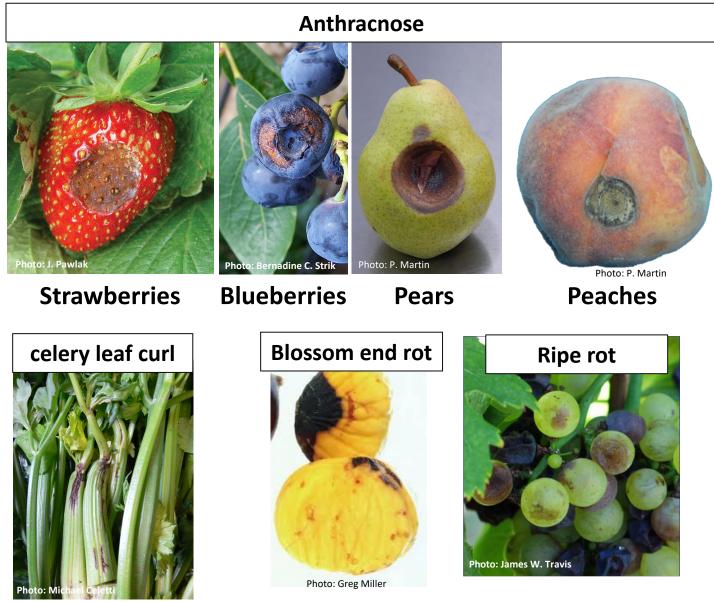
The causal fungi: Colletotrichum species


Sunken lesion


Orange spores (conidia)

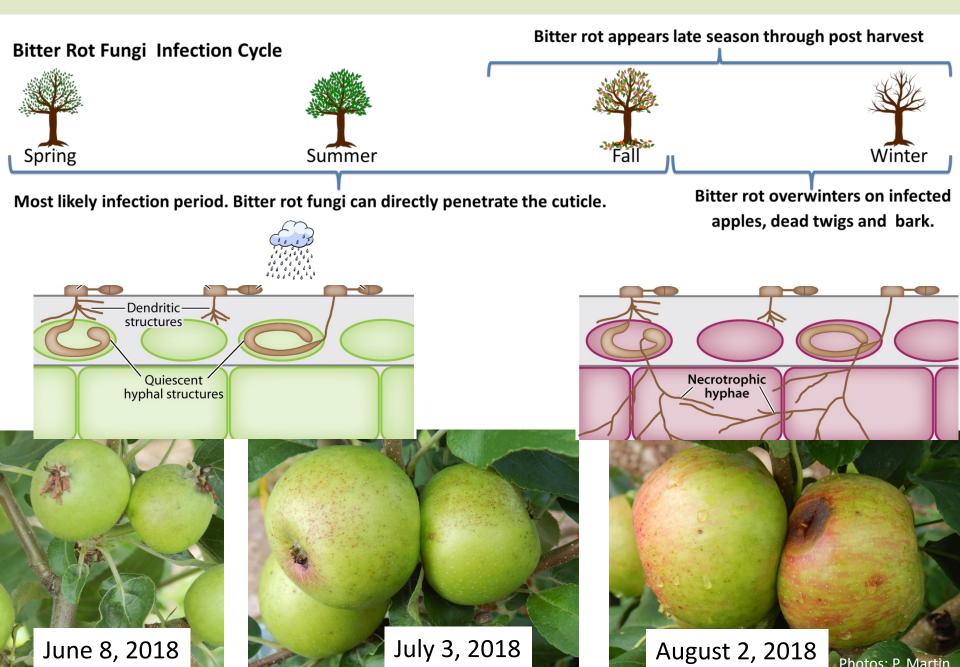

Concentric rings


Bitter rot V-shaped lesion


Black or white rot U-shaped lesion

Colletotrichum on growth media

Colletotrichum fungi infect many plants



Celery

Chestnuts

Grapes

Colletotrichum fungi often have dormant stages

Two species complexes of Colletotrichum cause bitter rot

Merivon label

Bitter rot (*Colletotrichum* spp.)

Luna Sensation label

Bitter rot¹ (Glomerella cingulata)

Asexual spores = conidia

Sexual spores = ascospores

The species complexes are similar to each other in many ways A few differences are listed below

C. acutatum species complex

Produces asexual spores (rain splash dispersed)

More common in the north Less sensitive to fungicides? *C. gloeosporioides (Glomerella cingulata) species complex*

Produces both sexual and asexual spores (wind and rain splash dispersed)

More common in the south

More sensitive to fungicides?

Fungal species that cause bitter rot in PA: request for samples

HOME | WANTED: BITTER ROT OF APPLE SAMPLES FROM PENNSYLVANIA GROWERS

Wanted: Bitter Rot of Apple Samples From Pennsylvania Growers

The Tree Fruit Pathology Lab at the Fruit Research and Extension Center is seeking apples infected with the fungus causing bitter rot from around the state of Pennsylvania in commercial orchards.

RELATED PRODUCTS

O Save For Later Print

MEWS UPDATED: AUGUST 27, 2018

Spotted Lanternfly Public Meetings WORKSHOPS

Bitter rot on apple and pear fruit is caused by the pathogenic fungi Colletrotrichum gloeosporioides and C. acutatum. Photo: Kari Peter, Penn State

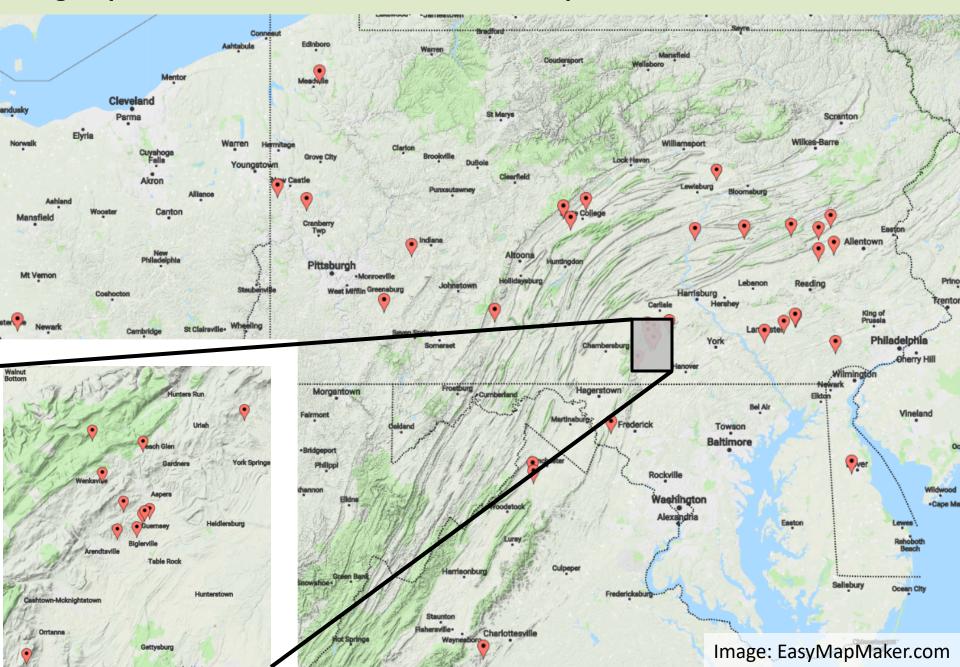
This might very well be the "Year of Bitter" Rot." Reports have been rolling in about the high incidence of bitter rot in apple orchards. The conditions this season have favored this explosion of disease activity. Consequently, we want to take advantage of this situation.

We are interested in obtaining apple fruit infected with the bitter rot fungus from around Pennsylvania to understand what species occur in Pennsylvania. We also want to test these fungal isolates for fungicide resistance to the most commonly used fungicides.

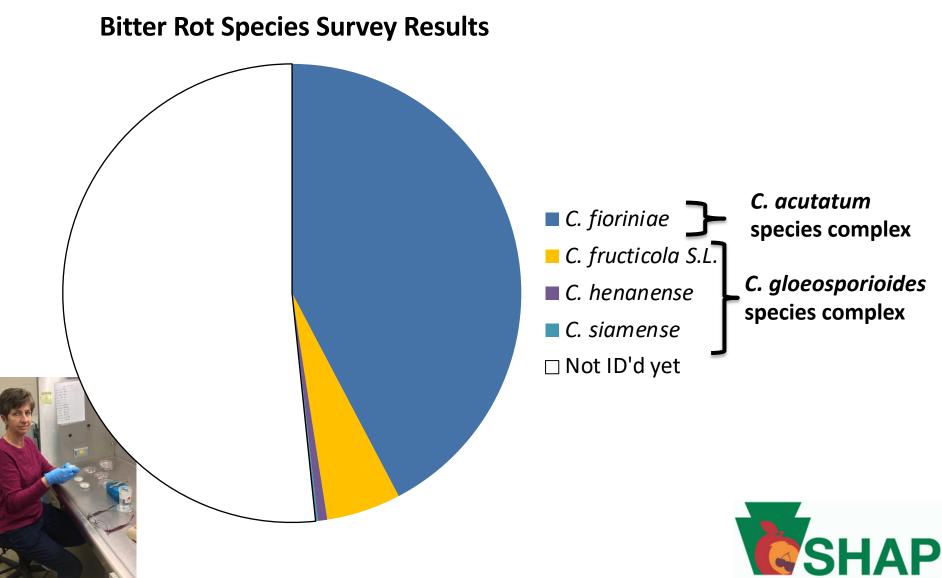
This research ultimately will lead to better bitter rot management strategies. Our goal is to collect bitter rot apples from as many

School

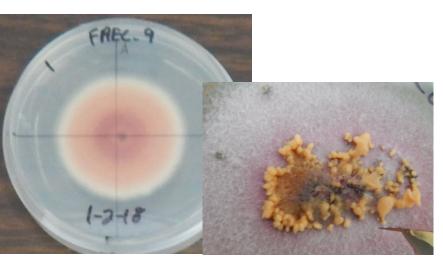
Blueberry Growers WORKSHOPS



Apple Insect and Mite Control Toolbox -Insecticide and... ARTICLES

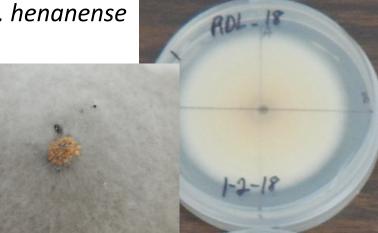


Fungal species that cause bitter rot: >500 samples from ~40 orchards


Over 500 fungal isolates collected from nearly 40 orchards

Fungal species that cause bitter rot: characteristics of species

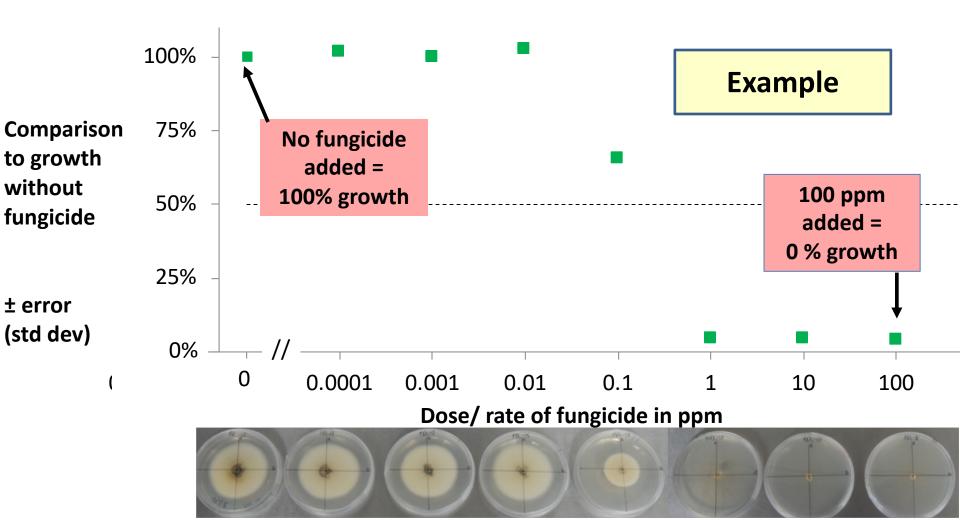
C. acutatum species complex Sexual stage rare


C. fioriniae

C. gloeosporioides species complex Sexual stage common

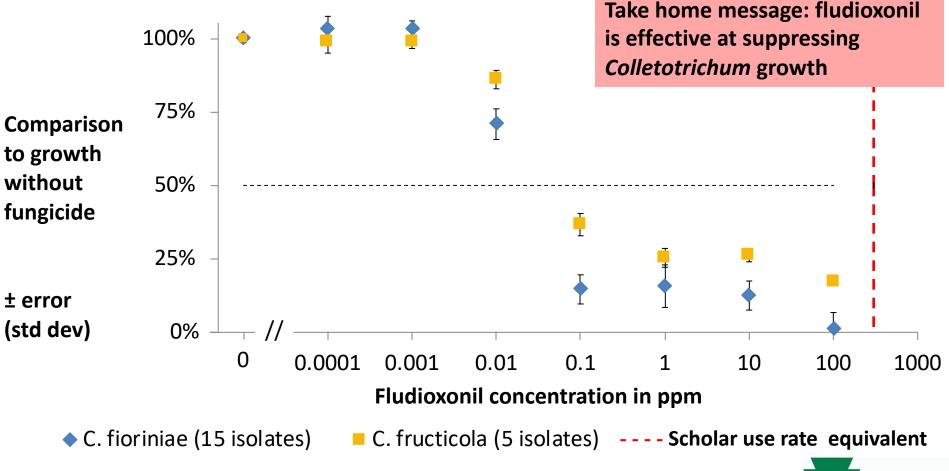
- C. fructicola S.L.
- C. siamense
- C. henanense

Determining fungicide sensitivity of *Colletotrichum* species found in PA


Focusing on fungicides that are commonly used for control of summer rots, especially those labeled for bitter rot

FRAC #	Trade Names	Active ingredient	PHI	Resistance risk
1	Topsin	Thiophanate methyl	1	High
11	Flint Extra Luna Sensation Merivon	Trifloxystrobin Trifloxystrobin Pyraclostrobin	14 14 0	High
12	Scholar	Fludioxonil	post	High
29	Omega	Fluazinam	28	Low - Medium

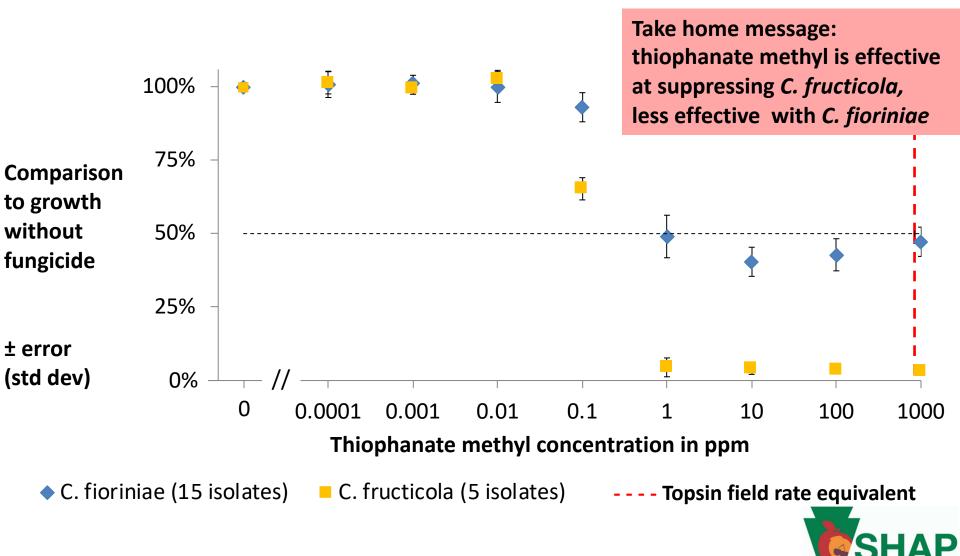
Fungicide sensitivity testing methods


- Lab tests
 - Use "poison plate" assay: Various amounts of fungicide is mixed with growth media and fungal growth is measured relative to an untreated control

Fungicide sensitivity towards FRAC group 12: fludioxonil

Tested as Scholar (post-harvest)

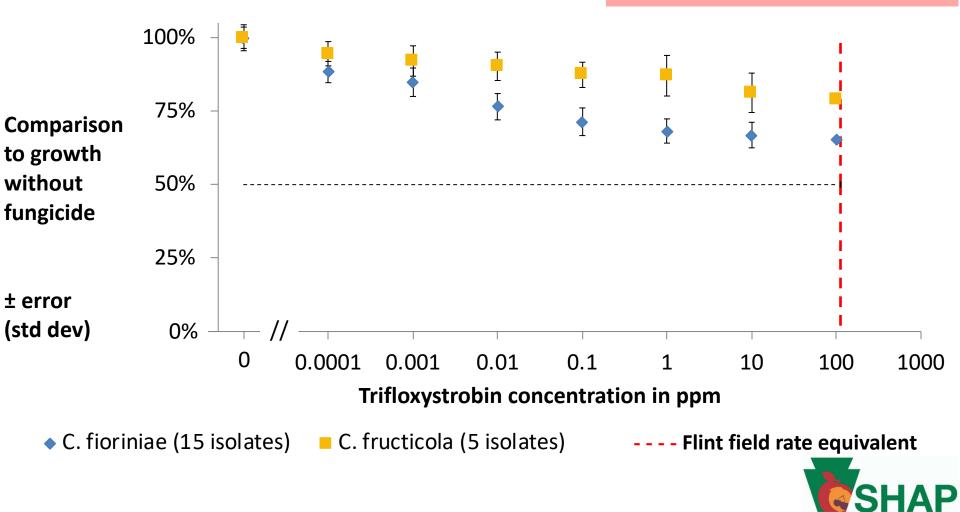
What Colletotrichum would see when treated in the packhouse (incorporated when processing) or while storage (fogged CA storages)



Fungicide sensitivity towards FRAC group 1: thiophanate methyl

Tested as Topsin M (pre-harvest)

What Colletotrichum would see in the field

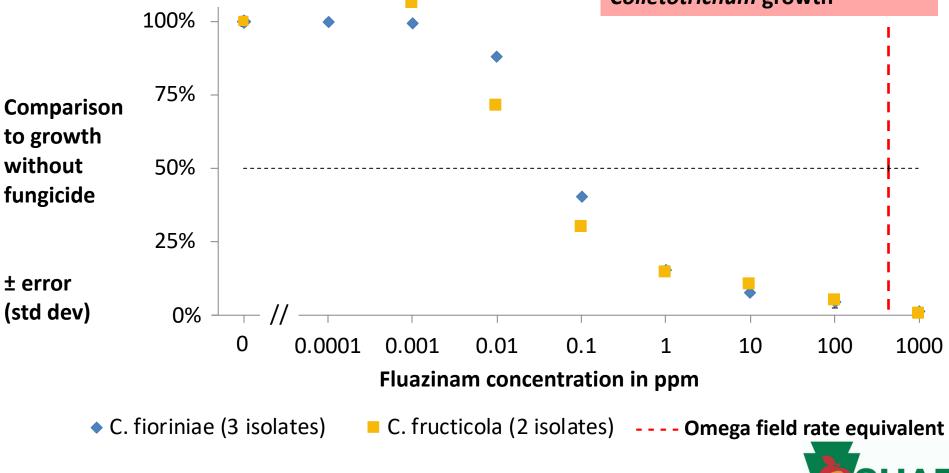


Fungicide sensitivity towards FRAC group 11: trifloxystrobin

Tested as Flint Extra (pre-harvest)

What Colletotrichum would see in the field

Take home message: trifloxystrobin is not effective at reducing *Colletotrichum* growth



Fungicide sensitivity towards FRAC group 29: fluazinam

Take home message: fluazinam is effective at suppressing *Colletotrichum* growth

Fungicide Field Trial in 'Honeycrisp' orchard block

Mid season rating of quiescent infection incidence

Pick asymptomatic apples during the season

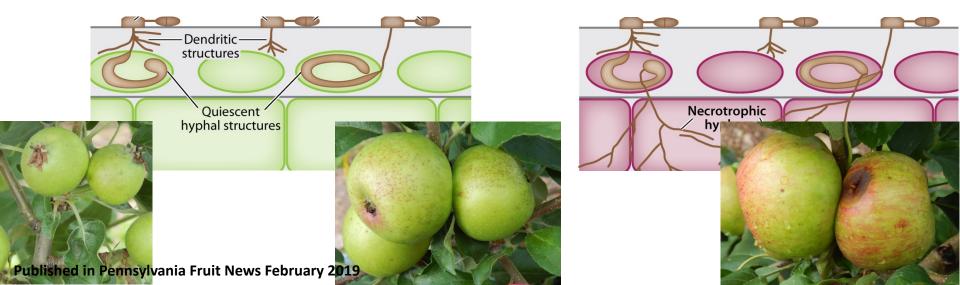
Surface disinfest with bleach and ethanol, freeze overnight.

Incubate and observe for characteristic orange spore masses

Harvest rating of bitter rot incidence

Rate apples for visible infections at harvest

Treatments FRAC Formulation		Timing of application		Apples picked July 3 rd : % sporulation (via freeze method)			% Bitter Rot Incidence at harvest	
7&11	Mancozeb Merivon + mancozeb	Tight cluster Pink, Bloom, PF	No		с	α = 0.05	b	
7	Mancozeb Sercadis + mancozeb	Tight cluster Pink, Bloom, PF	cover		bc		b	
3&9	Mancozeb Inspire Super + mancozeb	Tight cluster Pink, Bloom, PF	sprays			bc	b	
М	Captan (3 lb/acre)	Covers starting 5/24, every 10 day until harvest (8/30)				ab	а	
Untreated						а	b	


Tight cluster: April 18 Pink: May 1 Bloom: May 7 Petal fall: May 14 First cover: May 24

Take home message: Bitter rot infections can start throughout the season. Early fungicide sprays help with early infections, but good summer cover sprays are needed for full control. Merivon and Captan are best.

%

Fungicide Field Trial results: mid/late season reach-back activity

						_	
Treatments							
FRAC	Formulation	Timing	% Bitter Rot Incidence at harvest				
7&11	Merivon	June 28		b	α = 0.05		
7&11	Luna Sensation	June 28		ab		Take home m activity of the	
3&9	Inspire Super	June 28		ab		Merivon m dormant long	
Untrea	ated				а	Full season prevent infect	
		0	% 50	%	10	0%	

Penn State Tree Fruit Production Guide

Part IV. Chemical Management Tables 265

			Disease									
		Alternaria leaf blotch	Apple scab	Bitter rot	Black rot	Blossom end rot <i>(Botrytis)</i>	Fire blight	Flyspeck	Powdery mildew	Rusts	Sooty blotch	White rot
5	0		•	1.0.0					•			

Degree of control: 1 = best, 2 = good, 3 = fair, 4 = slight, 5 = none, 6 = no registration

2018	-2019	edition
------	-------	---------

Luna Sensation	1
Merivon	1
captan	2
Flint	2
mancozeb	2
Omega	2
Inspire Super	6
thiophanate-methyl	6

2020-2021 edition					
Merivon	1-2				
Omega	1*				
captan	2				
mancozeb	2				
Luna Sensation	3-4				
Flint	3-4				
Inspire Super	6				
thiophanate-methyl	6				

Bitter rot management recommendations*

Complete sprays best; IF ARM = KEEP INTERVALS VERY TIGHT

Bloom	7 days later	7 – 10 days later (if rain = 7 days)	7 – 10 days later (if rain = 7 days)	Covers
Merivon + Mancozeb	Merivon + Mancozeb	Mancozeb + Omega** or Captan 3 lb + Omega**	Merivon + Captan	Mid June: Omega** + Captan 3 lb OR Captan 5 lb (alone) Through August - September: Captan 5 lb (alone) <u>rotated</u> with Captan 3 lb + thiophanate methyl 1 lb Option: 28 day PHI One more app: Omega + Captan 3 lb

Preharvest: Merivon + captan

Omega: 28 day PHI; \$35 - \$50 per acre = Very \$\$\$; focus on most problematic blocks Thiophanate-methyl: 1 d PHI; \$5 – 7 per acre

*Per discussions with Dr. Peter

**Lab results look promising; field testing 2019 season

Future research

Fungicide active ingredients

- Test other modes of action (lab and field)
- Field test plant defense inducers
 - Regalia (increases lignification)
- Test for fungal gene mutations that reduce fungicide sensitivity

Fungicide timing of application

- Critical infection periods
- Timing of spore dispersal
- Persistence of dormant infections

Acknowledgments

Brian Lehman

Dr. Kari Peter

Teresa Krawczyk

Department of Plant Pathology and Environmental Microbiology

Fruit Research and Extension Center

- Growers who send in bitter rot samples
- Fungicides donated by the agro-chemical companies for the lab and field trials
- Support from the USDA National Institute of Food and Agriculture Hatch and Smith-Lever Appropriations

Estefani Peña, Teresa, Alexa Rudisill, Kate Thomas, Shelby Nicolau

Gabriella Scolpino, Gabrielle Crouse

Phillip Martin Mid-Atlantic Fruit & Vegetable Convention

January 30th, 2019