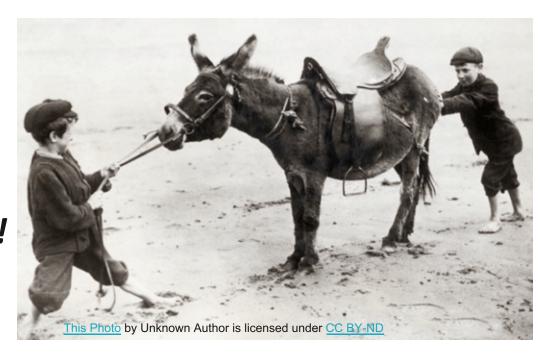
Preparing Orchard Soils: Biofumigation and other strategies

Mid-Atlantic Fruit and Vegetable Convention

January 29, 2019

Kari Peter, Ph.D.

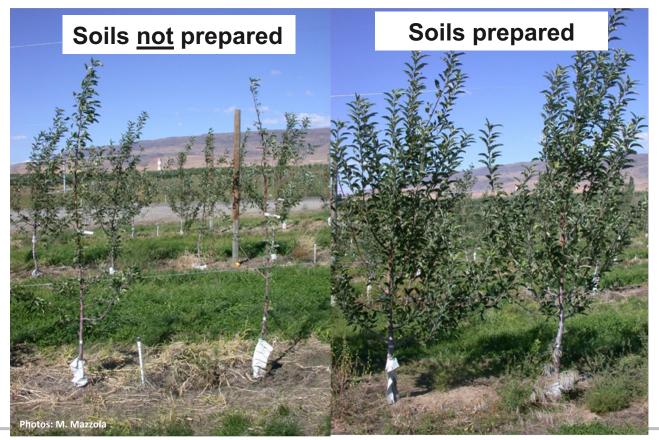
Penn State University Fruit Research and Extension Center
Biglerville, Pennsylvania USA
kap22@psu.edu


Preparing your orchard soils before planting?

Nope, I don't need to prepare my soils=

It takes time!

It costs money!


I don't have any problems!

Why orchard soils need to be prepared: Replant issues

Reduced productivity caused by nematodes and other pathogens

Cost: \$70,000 to \$ 150,000 an acre due to reduced productivity during the first four years of orchard planting*

Understanding the impact of nematodes and what do about it

What are nematodes and why are they so problematic?

➤ Not all nematodes are bad guys: we only worry about the plant parasitic nematodes

Feeding habits and life cycle

Survival and spread

Culprits

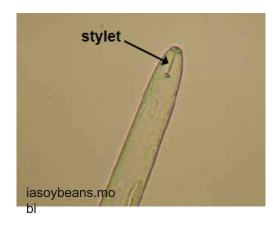
Damage

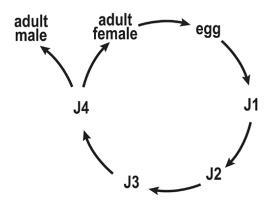
Symptoms of nematodes in the orchard

Does your orchard have nematodes?

Nematodes are in you orchard –

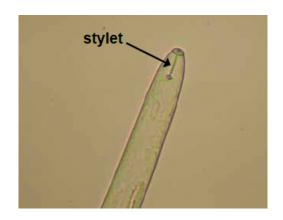
Now what?

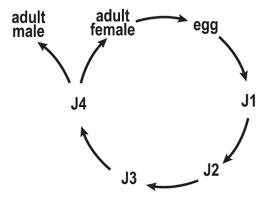

Management strategies



Plant-parasitic nematodes: Feeding habits and life cycle

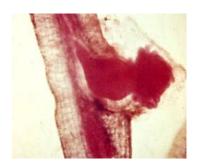
- Feeding habits
 - Respond to CO₂ & root exudates
 - Feed using a stylet
 - Ecto-parasites: Feed from outside the root
 - Endo-parasites: Feed from inside of the root
- Lifecycle
 - Develop into complete worms within eggs
 - 3 weeks (root-knot) to 2 yrs + (dagger)
- Obligate parasites: must feed on plant tissue





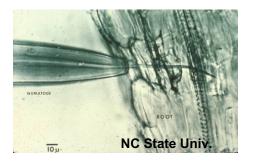
Plant-parasitic nematodes: Survival and spread

- Lack specialized survival structures
 - Decline quickly in absence of:
 - Host plant
 - Soils dried by drought or winter freezing
 - → Perennial plants (crops and weeds) can continue to support nematodes even in winter
- Survive as eggs (even during winter months)
- Move short distances in thin water layer that coats soil particles
 - Move greater distances through sandy soils
 - Human activities: Long distance movement
 - · Soil on equipment
 - Propagative plant parts (example: rootstocks)
 - Irrigation water



Plant parasitic nematodes: The culprits

Most economically important plant-parasitic nematodes in the orchard...


Root-Knot Nematode (RKN) (Meloidogyne hapla)

- Sedentary endoparasite
- Galls on roots
- Sandy soils

Root-Lesion Nematodes (*Pratylenchus* spp.)

- Migratory endoparasite
- Higher populations in sandy soils
- Replant issues

Dagger Nematode (Xiphinema spp.)

- Ectoparasite
- Vectors Tomato
 Rinspot Virus (ToRSV)
- Broad host range

Ring Nematode

(Criconemoides xenoplax)

- Ectoparasite
- Predisposition for canker and winter injury in stone fruit
- Peach tree short life (issue in Southeast)
- Bacterial spot and Bacterial canker
- Sandy soils

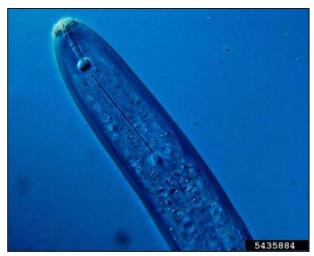
Symptoms in the orchard: Nematodes present

- → Tend to be found in "hot spots"
- Poor growth of replanted fruit trees
 Appearance of being girdled
- Above ground parts:

Stunted
Short internodes
Small leaves

Root system:

Small (may have galls – RKN)
Discolored
Poorly developed feeder roots


- Tree death: after 1st or 2nd growing season
- Symptoms can be similar to those caused by other factors....(underground insects, nutrient or water deficiencies, RAD)

Symptoms in the orchard: Lesion nematodes present

Lesion nematode – Replant disease connection

- Roots: short, necrotic in tufts resembling witches'-broom
- Damage will depend on initial population density and soil type (worst: sandy soils)
- Apple more sensitive to damage
- Damage a greater problem on dwarfing rootstocks
- Damage is exacerbated when nutrients and soil moisture are limiting


Walter Peraza Padilla, National University of Costa Rica, Bugwood.org

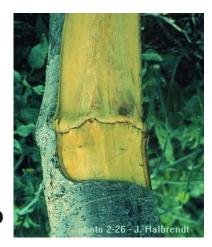
http://www.omafra.gov.on.ca/IPM/english les/diseases-and-disorders/applicables/disease.html

Symptoms in a peach orchard: Daggers present = ToRSV

Dagger nematode vectors ToRSV

- **Stone Fruit: Prunus Stem Pitting**
 - Trees appear weak and show general decline
 - Leaves: upward cupping; turning yellow or reddish-purple

- Pits or grooves may be seen in wood beneath bark of rootstock
- Pitting may or may not extend across graft union
- Break off easily at ground level



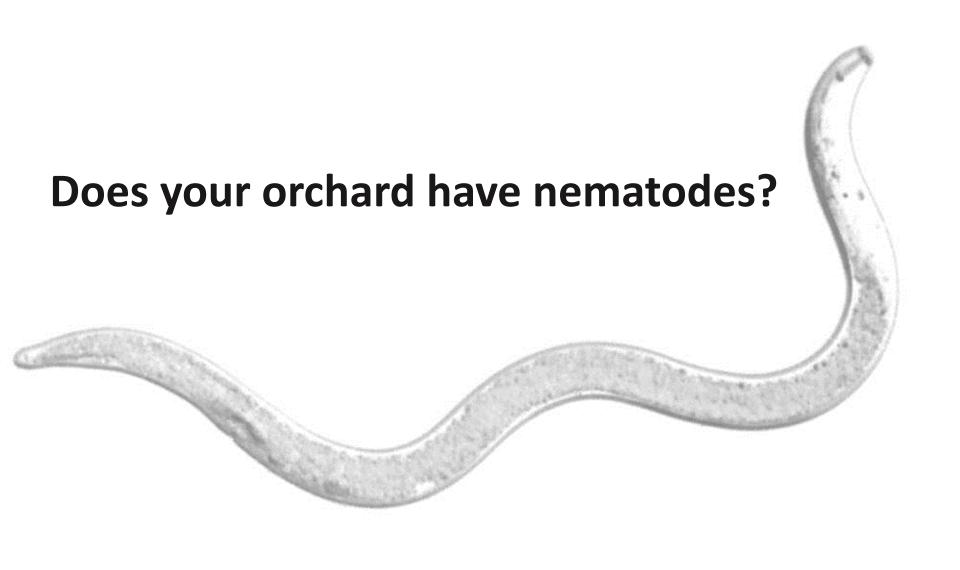
Symptoms in an apple orchard: Daggers present = ToRSV

Apple: Apple Union Necrosis

- Separation of graft union
- Thick, spongy, orange-colored bark
- Distinct necrotic line: Scion-rootstock union
- Union weakened: scion-rootstock separation
- Severity influenced by cultivar-rootstock combo

Apple Union Necrosis: Due to an incompatibility of a resistant scion grafted onto a susceptible, but tolerant rootstock

Tolerant rootstocks: M.26, MM. 106, MAC-30, MAC-39, P-2


Partially susceptible rootstocks: M.27, MM.111, Bud9, MAC-2, MAC-9, Ottawa 3, P-18

Resistant rootstocks: C6, M.7, P-1, P-22, Robusta 5, Bud-491, MM.102, Ottawa 11, M.2, M.9, P-13, CG10, Bud-146, Kansas-14, OAR-1, CG24, M.4, M.13, P-16, Bud-490, NAC-24, Ottawa 7

Susceptible scions: Stayman, Spartan, Paulared, Winesap, Tydeman's Early, Red Delicious, Ginger Gold

Resistant scions: Rome Beauty, Empire, Golden Delicious

Information Needed for Nematode Management

KNOW BEFORE YOU PLANT YOUR ORCHARD:

- Accurate identification of the nematode(s) populations involved
 - Examine root system
 - Submit soil and root samples to a Nematode Diagnostic Laboratory
- Damage threshold densities can vary by state
- Target crop plants: annual vs. perennial crops, etc.
- Cost-benefits of nematode damage/crop loss and cost of management options(s)
- Optimal sampling time: Late summer (~Labor day)

Find out if you have nematodes: Locations for analysis

KNOW BEFORE YOU PLANT YOUR ORCHARD

Pennsylvania no longer evaluates soil samples for nematodes. Other universities have capabilities--Need to call if they will accept out-of-state samples; instructions on website:

Michigan State University

http://www.pestid.msu.edu/

Phone: (517) 355-4536

Fax: (517) 432-0899

pestid@msu.edu

Clemson University

http://clemson.edu/plantclinic

Phone: 864-646-2133

Fax: 864-646-2178

Email: nemalab@clemson.edu

Rutgers University

http://www.njaes.rutgers.edu/services

Phone: 732-9332-9140

Fax: 732-932-1270

Table 11.6. Nematode Treatment Guidelines

	No./100 cc1	
Nematode	Peach	Apple
Lesion	60-80	40-60
Stunt	60-80	60-80
Spiral	40	40
Stubby Root	16	16
Dagger	any – as virus vector	any – as virus vector
	16+ for feeding injury	16+ for feeding injury
Ring	24	30
Cyst	not economic	not economic
Sting	8-10	8-10
Lance	40-60	40-60
Root Knot	any in new plantings	not economic

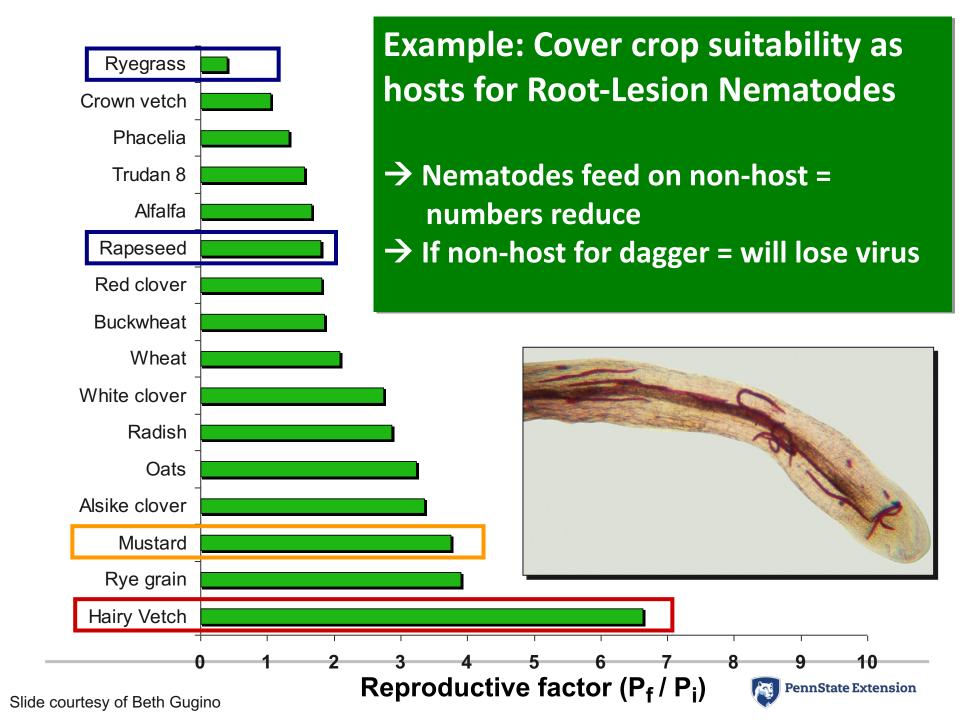
From the 2015 NJ Commercial Tree Fruit Production Guide

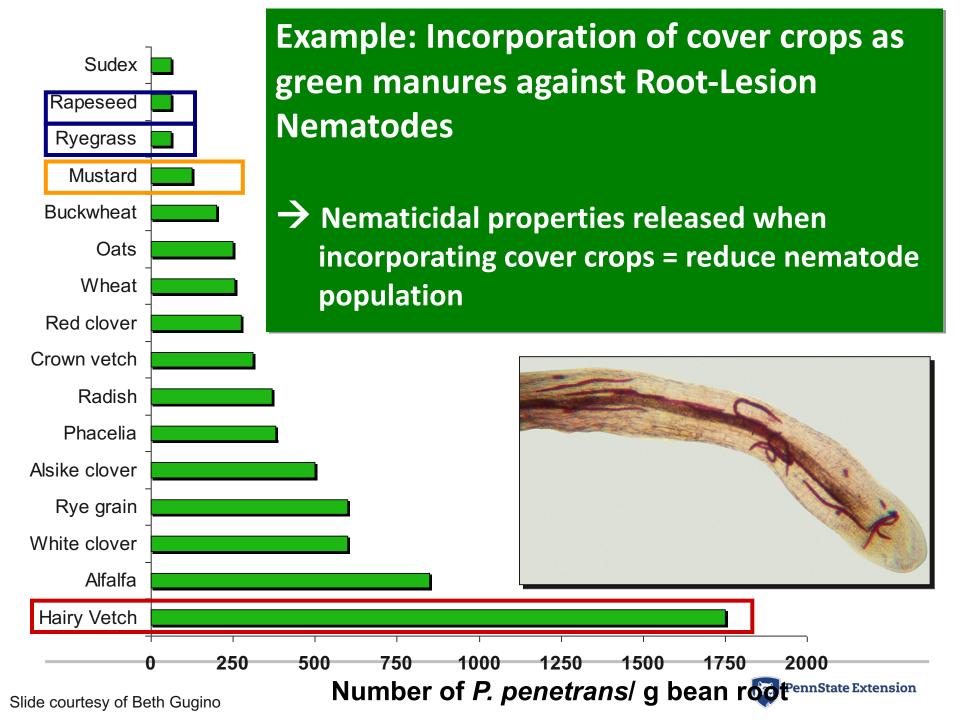
Nematodes are in your orchard --- Now what?

Controlling nematodes: Using cover crops Types of crops: Efficacy depends on nematode present

- Crucifer crops: mustards, rapeseed, oilseed radish, etc.
 - → Rapeseed: requires sulfur to produce nematicidal compounds
- Sudangrass and sorghum-sudangrass hybrids
 - **→**Nematicidal properties
 - → Non-host: does not support nematode population
- Crop rotations = ideal!*
 - Reduce and/or kill nematodes
 - **Example:**
 - Sorghum sudangrass summer
 - Rapeseed (Dwarf Essex) winter

- > 10 Daggers → 0 Daggers
- > 10 Lesion \rightarrow 0 Lesion




Controlling nematodes: Cover crops as biofumigants

Timely incorporation of a cover crop as a green manure

- → Ability to release toxic products that are lethal to the nematodes upon decomposition
- Chop cover crop into small pieces (flail mowing)
- Incorporate the cover crop immediately after mowing
- Irrigate or cultipack to trap compounds
- The more cover crop = the more bio-active compounds available

Cover crops as biofumigants: Significant benefits

- Economical*
 - → Investment in establishment: \$386/A for apple
 - → Return: \$4600
 - → Savings from not using a pre-plant nematicide: \$1000-2000/A
- Additional benefits
 - → Reduces weed issues
 - → Increases soil organic matter
 - Improve nutrient availability
 - → Controls erosion
 - → Can improve drainage, aeration, soil texture
 - → Environmentally friendly (chemical input reduced)
- For full benefit: Weeds must be controlled

Slide courtesy of Beth Gugino

Chemical fumigation: What and how

- General biocides: pathogens, nematodes, weeds
 - Vampam HL
 - Telone II
 - Telone C-17
 - Telone C-35
 - Basamid
- Injected diffuse upward and laterally
- High vapor pressure necessitates tarping
- Efficacy affected by temperature, rainfall, soil texture, etc.
- <u>Recommendation</u>: Apply fumigants late summer/early fall; plant trees following spring

→ Current regulations and requirements

EPA: Soil Fumigant Toolbox: https://www.epa.gov/soil-fumigants

Effective fumigation requires...

...Good site preparation!

- Soil tilled thoroughly several weeks prior
 - Break up soil clods
 - Encourage decomposition of plant debris
 - Remove large root pieces
- Soil temperature: Do not apply when soil temp at 12 inch depth is below 50°F
- Soil moisture necessary (read label)
 - Well drained
 - Do not apply when too wet or saturated
- Soil type: Higher rates of fumigants needed for heavier clay soils
- Sealing of soil surface
- Apply at least 3 weeks before planting to avoid phytotoxictiy

Non-fumigant nematicides: Via chemigation

- Narrower spectrum of activity
 - Not as effective as fumigants
- Works well when applied in the spring
 - Soil moisture and rainfall plentiful
 - Redistribution depends on water movement
- Active at lower dosages
 - Kills by modifying nematode behavior

*Contains a minimum of 1 X 1010 viable spores/gram

- Non-phytotoxic applied at planting
- Soil temp at application not critical

Active Ingredient1: Myrothecium verrucaria strain AARC-0255 ermentation solids and solubles 90% w/w Other Ingredients 10% w/w Total 10% w/w
1"Non-viable"/"killed" microbial composition
Potency: 91,600 RKU (Root-Knot Units) per gram of product. Potency units should not be used to adjust use rates.
EPA Reg. No. 73049-67

List No. 60278

EPA Est. No. 33762-IA-001

.94.0%

.100.0%

Organic Materials Review Institute
Net Weight: 20 Pounds
EPA Reg. No. 72444-2
EPA Est. No. 72444-2
Manufactured by:

Nonbearing trees only (= trees that will not bear for 12 months)

Recent biofumigants and biopesticides on the market

Only limited data is available about efficacy of these products

Dominus (Isagro USA)

- Allyl isothiocyanate
- Broadcast application, flat fume application, chemigation

Ecozin Plus 1.2 % ME (AMVAC)

- Azadirachtin- botanical nematicide
- Emulsifiable concentrate
- Foliar spray, drench

Insect, nematodes, soil-borne pathogens

Preventing nematode build-up and damage

- When replanting an orchard: good tree removal
 - → Remove as much of the roots as possible
- Exclusion/Sanitation
 - Nematodes can move via:
 - → Mechanical equipment
 - → Rootstocks
 - → Irrigation water
 - Before planting: biofumigation, fumigant, nonfumigant nematicides
 - Crop rotation with cover crops****
- Minimize crop stress

Preventing Tomato Ringspot Virus Infection

Knocking back Dagger Nematodes...

- Biofumigation: Crop rotations
- Buy certified virus-free replants
 - → Inquire which viruses are included
 - → Don't forget about pollinators!

 ** Sometimes symptomless carriers
- Eliminate virus reservoirs
 - → Prevent sucker re-growth

- Control broadleaf weeds
 - → Prevent reintroduction of nematode transmitted viruses

Preventing Tomato Ringspot Virus Infection

Dandelions may function as a vector:

- Seed infected: Long distance dispersal of ToRSV
- A reservoir host functioning as a source of virus for acquisition by nematode vectors
 - Short range spread=other weeds
 - To apple and peach trees

23 different weeds are hosts

Reinforcing what we just learned: Penn State Extension -- Orchard Site Preparation: Bio-renovation

https://www.youtube.com/watch?v=R4y6dw-kO18

Preparing your orchard soils before planting?

Yes, I'll prepare my soils =

I don't want to lose time!

I don't want to lose money!

I don't want any problems!

Preparing Orchard Soils: Biofumigation and other strategies

Mid-Atlantic Fruit and Vegetable Convention

January 29, 2019

Kari Peter, Ph.D.

Penn State University Fruit Research and Extension Center
Biglerville, Pennsylvania USA
kap22@psu.edu