**Fighting Fire Blight:** 

An update on blossom blight and shoot blight management





Kari Peter, Ph.D.

Department of Plant Pathology and Environmental Microbiology

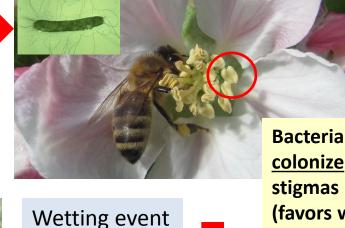
Penn State University Fruit Research and Extension Center

Biglerville, PA

kap22@psu.edu 717-677-6116 Ext 223



@drtreefruit




# After 3 interesting seasons...what's the latest about fire blight?

- Disease cycle review
- ➤ A stroll down memory lane: The last 3 seasons and fire blight conditions
- Management
  - Blossom blight
  - Shoot blight

## Reviewing the fire blight disease cycle

Tight cluster – Pink: Bacteria replicates in cankers Oozing bacteria: Attracts insects – insects <u>disperse</u> bacteria to flowers (wind and rain also <u>disperse</u> bacteria)



+ warm temps

colonize
stigmas
(favors warm
temps): does
not cause
disease (yet)



Shoot Blight Canker Blight Trauma Blight Rootstock Blight







**Blossom Blight** 



# After 3 interesting seasons...what's the latest about fire blight?

A stroll down memory lane: The last 3 seasons and fire blight conditions

Using MaryBlyt to monitor conditions during bloom:

- Blooms open +
- Average temp 60 65°F +
- Wetting event (rain, humidity, dew) =
  - Infection event

## The Pennsylvania Fire Blight Saga: 2014 - 2015 = rough



### 2014:

- May: Ideal disease conditions (long bloom period)
- June: Ideal disease conditions
- July: Dry conditions
- = Trees stopped growing and disease spread stops
- Epidemic year

| SUNDAY | MONDAY   | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY | SATURDAY      |
|--------|----------|---------|-----------|----------|--------|---------------|
| 26     | 27       | 28      | 29        | 30       | 1 Dew  | 2 Dew<br>HIGH |
| 3 Dew  | 4 Dew    | 5 🥎     | 6         | 7 Dew    | 8 Dew  | 9 🔷           |
|        |          |         | INFECTION |          |        |               |
| 10 Dew | 11 Dew   | 12 🧁    | 13        | 14 Dew   | 15 Dew | 16 🧁          |
|        | INFECTIO | V       |           | HIGH     |        | INF.          |
| 17 🍣   | 18 🍣     | 19 🝣    | 20        | 21       | 22 Dew | 23            |
|        | INFECTIO | M       | HIGH      |          | HIGH   |               |
| 24 🍣   | 25 Dew   | 26 Dew  | 27        | 28 🍣     | 29 Dew | 30 🍣          |
| HIGH   |          |         | INFE      | CTION    |        |               |
| 31 🍣   |          |         |           |          |        |               |
| INF.   |          |         |           |          |        |               |

#### 2015:

- May: Ideal disease conditions during bloom (warm and humid)
- June: 13 20 inches of rain fell the second half of the month
- July: Several inches of rain during the first half
- Due to high amounts of rain, trees never stopped growing and disease continued to spread through September

# The Pennsylvania Fire Blight Saga: We caught a break in 2016...

(And, no: fire blight wasn't a problem in 2016 because the last 2 years were bad...)



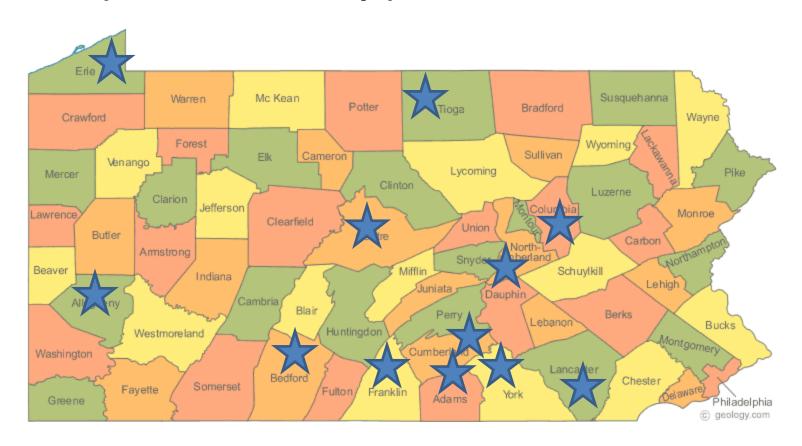
| Green tip: March 11 Bloom: April 18 - 25 APRIL 2016 |            |           |             |      |     |            |  |
|-----------------------------------------------------|------------|-----------|-------------|------|-----|------------|--|
| SUN                                                 | MON        | TUE       | WED         | THU  | FRI | SAT        |  |
|                                                     |            |           |             |      | 1   | 2          |  |
| 3                                                   | <b>R</b> 4 | <b>5</b>  | 6           | 7    | 8   | <b>R</b> 9 |  |
| 10                                                  | 11         | 12        | 13          | 14   | 15  | 16         |  |
|                                                     |            | HIGH      |             | HIC  | SH  |            |  |
| 17                                                  | 18         | 19        | 20          | 21   | 22  | 23         |  |
|                                                     |            | INFECTION | 600         | (60) | 60  | (6°)       |  |
| 24                                                  | 25         | 26        | <b>3</b> 27 | 28   | 29  | 30         |  |

| reen tip: M<br>loom: April | larch 11<br>  18 - 25 | <b>YAN</b> | 20        | 16         | old and wet: La<br>mid-May (Ave t | te April -<br>emp 46 – 60F |
|----------------------------|-----------------------|------------|-----------|------------|-----------------------------------|----------------------------|
| SUN                        | МОИ                   | TUE        | WED       | THU        | FRI                               | SAT                        |
| <b>68</b>                  | HIGH                  |            | W. W.     |            | (62)                              |                            |
| 1                          | 2                     | 3          | 4         | 5          | 6                                 | 7                          |
|                            |                       |            |           | HIGH       |                                   | (62)                       |
| 8                          | 9                     | 10         | 11        | 12         | 13                                | 14                         |
| (60)                       |                       | (68)       |           |            |                                   |                            |
| 15                         | 16                    | 17         | 18        | 19         | 20                                | 21                         |
|                            |                       |            | INFECTION | HIGH INFEC |                                   | TION                       |
| 22                         | 23                    | 24         | 25        | 26         | 27                                | 28                         |
|                            | INFECTION             |            |           |            |                                   |                            |
| 29                         | 30                    | 31         | Little    | e rain d   | during                            | summ                       |



# After 3 interesting seasons...what's the latest about fire blight?

Tools to manage blossom blight:


Antibiotic update
Streptomycin resistance
Streptomycin usage
Other antibiotics

Highlights of alternatives evaluated

Biologicals Plant-based Copper



# Streptomycin resistant *Erwinia amylovora:* state-wide evaluation (Poster in hallway!)



- Multi-year evaluation (2014 2016)
- Funded by State Horticultural Society of Pennsylvania (2016)
- 12 counties; 26 locations (multiple cultivars); 747 isolates

## No streptomycin resistant E. amylovora found

## Blossom blight management with <u>antibiotics</u>: 2014 – 2016 Evaluation of antibiotics (alone and in rotation w/ Serenade Optimum)

Resistance management tool?

Gala/M.7 (~14 yr old)



## 2014 Treatments @ Bloom: 20%, 50%, 100%

FireWall - FireWall - FireWall

Serenade Optimum – FireWall – FireWall

FireWall – Serenade Optimum – FireWall

**Untreated** 

## 2016 Treatments @ Bloom: 50%, 100%, Late Bloom

FireWall - FireWall - FireWall

FireWall - FireWall - Serenade Optimum

FireWall – Serenade Optimum – FireWall

Kasumin - Kasumin - Kasumin

**Untreated** 

Blossom blight management: 2014 – 2016 Evaluation of antibiotics (alone and in rotation)



Being proactive to keep strep resistance at bay

- ➤ Limit strep applications during bloom (fewer the better, no more than 4 apps/season)
- Antibiotic alternative early in bloom shows promise

Future research: Evaluating other biologicals and products that induce plant resistance tank mixed with strep

## **Blossom blight management:**

## 2014 – 2016 Evaluation of alternatives

### 2014

Blossom Protect (Aureobasidium pullulans)



Actinovate (Streptomyces lydicus)

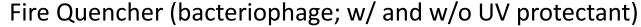
### 2015

Serenade Optimum (Bacillus subtilis)

Blossom Protect (Aureobasidium pullulans)



Bloomtime (*Pantoea agglomerans*)


Cueva (copper octanoate) + Double Nickel (Bacillus subtilis)

Fire Quencher (bacteriophage cocktail)

### 2016

Serenade Optimum (*Bacillus subtilis*)

Blossom Protect (Aureobasidium pullulans)



Oxidate (Hydgrogen peroxide + Peroxyacetic acid)

Regalia (Extract of Reynoutria sachalinensis, aka Giant knotweed)

Magna Bon (copper sulfate pentahydrate)

**Cueva (copper octanoate)** 



# Blossom blight management: 2014 – 2016 Evaluation of alternatives

2014 Treatments @ Bloom: 20%, 50%, 100%

FireWall x 3

**Blossom Protect x 3** 

**Untreated** 

2016 Treatments @ Bloom: 50%, 100%, Late Bloom

FireWall x 3

**Blossom Protect x 3** 

Regalia 2 qt/A x 3

Regalia 1 qt/A + MagnaBon 1 pt/A

MagnaBon 1 pt/A

Cueva 2 qt/A

**Untreated** 

# Downside of using Blossom Protect during very wet bloom time (and thereafter): Russet

Registered for sale in Arizona, California, Colorado, Idaho, Iowa, Massachusetts, Michigan, Minnesota, New York, North Carolina, Oregon, Pennsylvania, Utah, Virginia, Washington and

Wisconsin

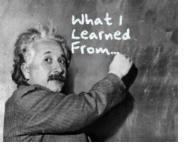






- > Aureobasidum pullulans can cause fruit russeting under certain environmental conditions
- ➤ Good scab weather = russet conditions (\*Fungicides are limited when using BP during bloom)

2014 – 2016: Shoot blight resulting from blossom blight infections → effect of blossom blight treatments


Strep applications: Trees with the fewest instances of shoot blight

## **Copper (Cueva and MagnaBon):**

➤ Regardless of blossom blight control (depending on year) – trees treated with copper have fewer instances of shoot blight than trees not treated or treated with products where blossom blight control was poor

## Alternatives limiting blossom blight → shoot blight:

- Blossom Protect
- Regalia and Serenade Optimum shoot blight is reduced (most noticeable during low pressure years)



# Take home messages for blossom blight management...

- Be judicious when using strep: Don't let you guard down even though we haven't found SmR E. amylovora
- Alternatives have promise in an <u>integrated program</u> (no strep replacements just yet...)— timing is critical (not much forgiveness as we see when using strep)
  - Blossom Protect has been consistent (\*some issues)
  - > Efficacy: Disease pressure makes a HUGE difference
  - > Timing is very important: Still need more research to fine tune
- Antibiotics + alternatives at bloom = potential for season long control

## Want more detail about the data for each year?

Email: <u>kap22@psu.edu</u> → I'll send you the reports

or

Call: 717 – 677 – 6116 x 223  $\rightarrow$  I'll mail you the reports





# After 3 interesting seasons...what's the latest about fire blight?

**Tools to manage shoot blight:** 

**Cover sprays** 

Copper

Low rates of prohexadione calcium for dwarf trees

- ➤ Apogee: W/ UMD WMREC (Geneva rootstock demo blocks)
- > Kudos: W/ PSU FREC Horticulture



# Review of conditions during 2016...

FB Data inconclusive due to weather...
However, Apogee reduced growth

May 4, UMD: FB \ Inoculations for Apogee trial

2<sup>nd</sup> week of May,
PSU: Started <u>copper</u>
<u>cover</u> sprays in
blossom blight trial
block

|   | Green tip: March 11 Bloom: April 18 - 25 APRIL 2016 |            |             |           |           |                 |                 |  |
|---|-----------------------------------------------------|------------|-------------|-----------|-----------|-----------------|-----------------|--|
| _ | SUN                                                 | MON        | TUE         | WED       | THU       | FRI             | SAT             |  |
|   |                                                     |            |             |           |           | 1               | 2               |  |
|   | 3                                                   | <b>F</b> 4 | <b>11</b> 5 | 6         | 7         | 8               | 9               |  |
|   | 10                                                  | 11         | 12          | 13        | 14        | 15              | 16              |  |
|   |                                                     |            | HIGH        |           | HIC       | SH              |                 |  |
|   | 17                                                  | 18         | 19          | 20        | 21        | 22              | 23              |  |
|   |                                                     |            | INFECTION   | 60        | 60        | 60              | 60              |  |
|   | 24                                                  | 25         | 26          | <b>27</b> | <b>28</b> | <sup>§</sup> 29 | <sup>§</sup> 30 |  |

April 20 – 27, PSU: Blossom blight trial

| Green tip: N<br>Bloom: Apri | March 11<br>I 18 - 25 | <b>VAN</b> | 20        | 16   | old and wet: La<br>mid-May (Ave t |      |  |
|-----------------------------|-----------------------|------------|-----------|------|-----------------------------------|------|--|
| SUN                         | MON                   | TUE        | WED       | THU  | FRI                               | SAT  |  |
|                             | HIGH                  |            |           |      |                                   |      |  |
| 1                           | 2                     | 3          | 4         | 5    | 6                                 | 7    |  |
|                             |                       |            |           | HI   | GH                                |      |  |
| 8                           | 9                     | 10         | 11        | 12   | 13                                | 14   |  |
| 15                          | 16                    | 17         | 18        | 19   | 20                                | 21   |  |
|                             |                       |            | INFECTION | HIGH | INFEC                             | TION |  |
| 22                          |                       | 24         | 25        | 26   | 27                                | 28   |  |
|                             | INFECTION             |            |           |      |                                   |      |  |
| 29                          | 30                    | 31         |           |      |                                   |      |  |

May 20, PSU: Inoculations for Kudos trial

## Cover sprays to manage shoot blight that occurs from blossom blight: ... Cueva showed promise in 2016

## 14 yr Gala/M.7

- Used "buffer" trees in blossom blight trial (blossoms not treated)
- Treated prior to symptom development
- "natural infection"

| 2016 Treatment and Rate/A | Timing                     |
|---------------------------|----------------------------|
| Untreated                 |                            |
| Cueva 2 qt                | Late petal fall – mid-July |
| Cueva 2 qt +              | Late petal fall – mid-July |
| Double Nickel 1 qt        |                            |

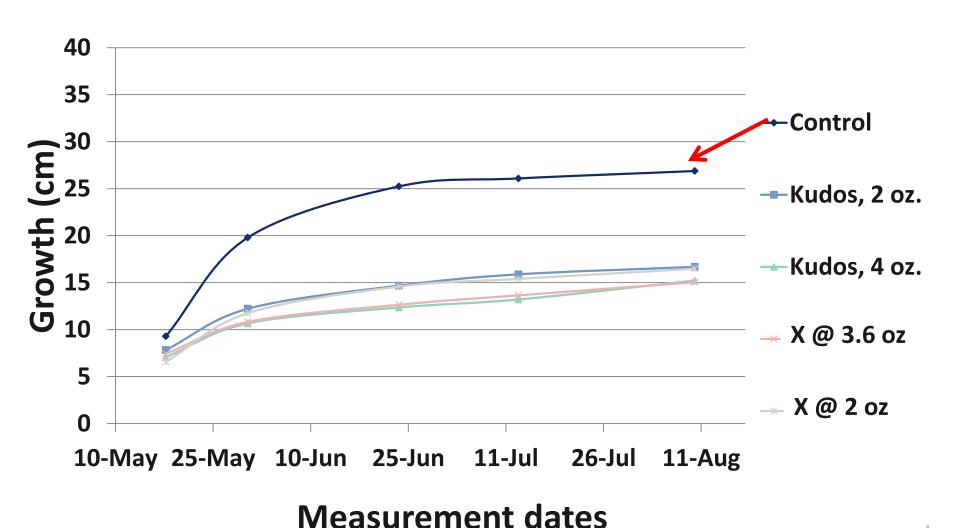
- Numbers of shoot blight still high due to no blossom blight control; however, Cueva does reduce shoot blight
- No russet observed (but, it was a dry summer...)
- ➤ Integrated approach: Good blossom blight management plus shoot blight management → important during years with severe pressure



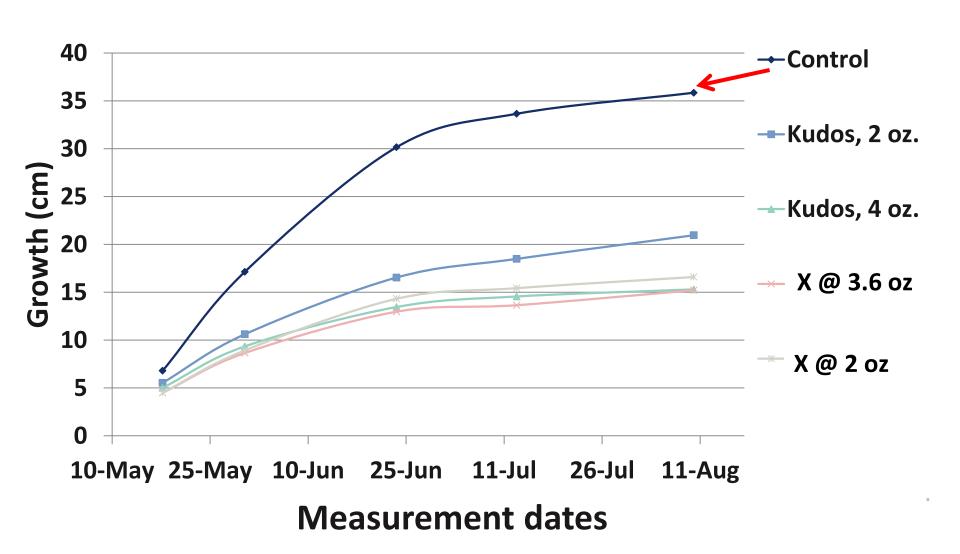


# Using low rates of Kudos on dwarf trees to manage fire blight

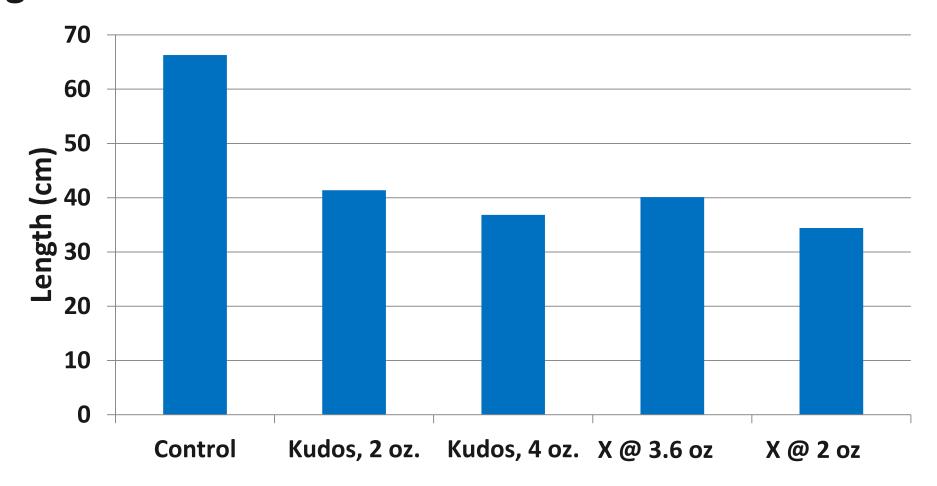
 How does it affect the rate of shoot growth throughout the season?


 How does it affect the severity of fire blight (whether or not shoot growth is affected)?



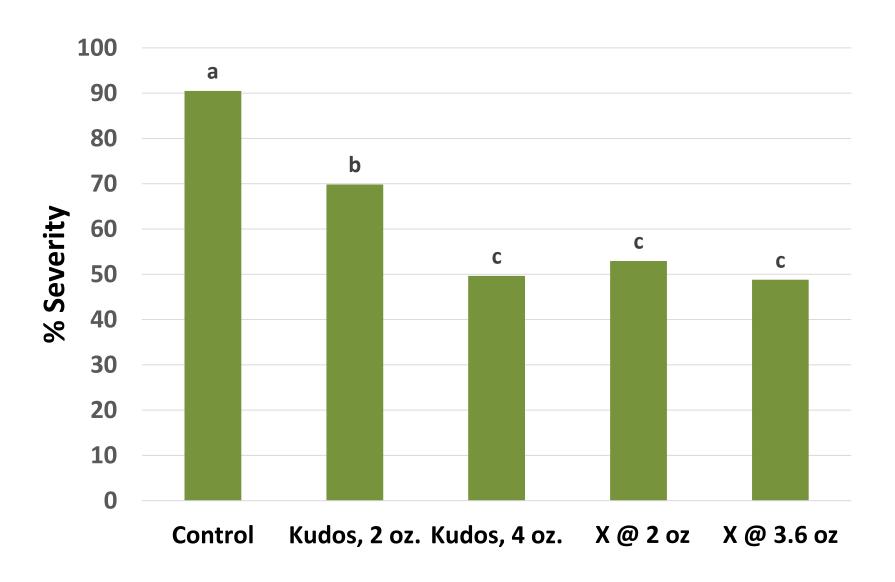

# Using low rates of Kudos on dwarf trees to manage fire blight

- Crimson Crisp on M.9 rootstock trained to tall spindle training system (2011 planting; trees had moderate vigor)
- > Four spray applications (@ 2 oz/A or 4 oz/A):
  - · Pink: 18 Apr
  - Petal fall: 11 May
  - First cover: 25 May
  - Third cover: 10 June
- Completely random block design with four multitree replications
- ➤ W/in treatment: Shoots inoculated for fire blight evaluation were on separate trees from the shoot growth evaluation

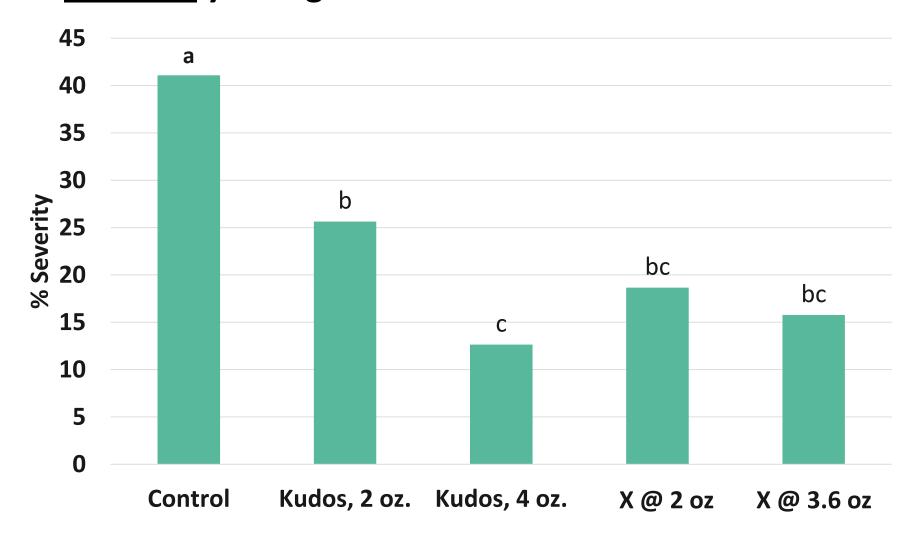

# Kudos at high and low rates reduces <u>terminal</u> shoot growth 40 – 50%



# Kudos at high and low rates reduces bourse shoot growth 40 -50%




# Kudos at high and low rates reduces <u>renewal</u> shoot growth 40 – 50%




> Overall: Too much growth reduced for a horticulturalist's liking... However, for the plant pathologist...

# Kudos at high and low rates reduces severity of fire blight on current year's growth



## Kudos at high and low rates reduces severity of fire blight on previous year's growth



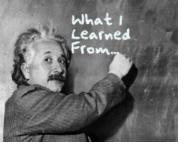
- > Did not progress into central leader
- > Overall: Terrific news for the plant pathologist...



True test: Does Kudos prevent infection of <u>renewal shoots</u>...?

Only 4 shoots were available for evaluation/inoculation

Unfortunately... Neither Kudos rate prevented fire blight from advancing to the spindle on renewal shoots




# What's next for limiting fire blight on dwarf trees...?

- Goal: Adequate growth AND disease control
  - Fewer ProCa applications?
  - Adjust timing of applications?

- > Non-plant growth regulator products for fire blight management on dwarf trees...
  - ➤ Greenhouse experiments using SAR products limit fire blight on young, growing trees (but not growth) Timing is very important... (Poster in hallway!)
  - Taking to the field for 2017 season (\*dwarf trees)





# Take home messages for shoot blight management...

- Copper sprays limit shoot blight mindfulness of phytotoxicity (weather conditions) and type of copper used (coppers are not created equal)
- Low rates of ProCa in dwarf trees:
  - Reduces growth in dwarf trees significantly
  - > Reduces fire blight severity significantly (renewal shoots=vulnerable)
  - ➤ More research needed (timing, number of applications) for determining benefits of using ProCa in dwarf trees
- Semi-dwarf trees: ProCa encouraged (especially those with a history of fire blight...canker blight suppression)
- Dwarf trees: Shoot blight management may lie in products that induce resistance
  - Smaller trees show better responses than larger (semi-dwarf) trees
- Timing is everything...!



## Overall take home messages...

- Fire blight management has to be an integrated approach
  - > Sanitation: Canker removal
  - Blossom blight management (monitoring disease pressure: important)
  - Shoot blight management (may start during blossom blight management – disease pressure will be a factor for management decisions)

Not only will you get control for the current season, but for future seasons



## **ACKNOWLEDGEMENTS**

### **FREC Tree Fruit Pathology Lab**

Brian Lehman

Teresa Krawcyzk

## Plant Pathology Summer Crew 2014 - 16

**Daniel Crowe** 

Josh Hersl

Hanna Laukaitis

Maggie Lemus

Phillip Martin

**Drew May** 

Katie Shoemaker

**Kate Thomas** 

**Brett Williams** 

Johannah Williams

### **FREC Hort Lab**

Jim Schupp

**Edwin Winzeler** 

Hort 2016 Summer Crew

#### **FREC Farm Crew**

**Carl Bower** 

Bashar Jarjour

### **University of Maryland**

Bryan Butler Doug Price

### **Support**

Aceto

**BASF** 

Bayer CropScience

Certis ISK

Dow Marrone

DuPont Novozymes Biologicals

Nufarm

Fine Americas, Inc

FMC Syngenta

Gowan Westbridge

IR-4

State Horticultural Society of Pennsylvania Maryland State Horticultural Society



**Growers of Pennsylvania and Maryland** 

## **Fighting Fire Blight:**

An update on blossom blight and shoot blight management

## Questions?





Kari Peter, Ph.D.

Department of Plant Pathology and Environmental Microbiology

Penn State University Fruit Research and Extension Center

Biglerville, PA

kap22@psu.edu 717-677-6116 Ext 223



@drtreefruit