

High density orchard recommendations

Region	System
New York, Robinson 2013 http://www.nyshs.org/pdf/-NYFQ%202012.CMC/- NYFQ%20WINTER%202012.CMC/1.Experiences%20with%20Support%20Systems%20f or%20the%20Tall%20Spindle%20Apple%20Planting%20System.pdf	3 x 10' (1,452 trees/A) Tall spindle
Washington State, Musacchi 2014 http://jenny.tfrec.wsu.edu/wsha2014/Precision Horticulture/MusacchiPrecisionMechanization.pdf	3 x 10' Multi leader, V axis
North Carolina, Parker 1998 http://content.ces.ncsu.edu/high-density-apple-orchard-management	4-8 x 12-16' (450-600 trees/A) Tall Spindle

Considerations:

tree vigor, orchard management, cost of establishment, rootstock availability, mechanization

Mid-Atlantic:

What are the recommendations for high density plantings? Which rootstocks are appropriate?

G.202	Resistant to Fire Blight and Wooly Apple Aphid
G.202TC	Tissue Culture
G.41	Dwarfing rootstock, Resistant to Fire Blight and Crown Rot
G.935	Dwarfing rootstock, Resistant to Fire Blight and Crown Rot

Scion

Cripps Pink

Brooksfield Gala

Keedysville Trials

- High Density system for western MD
- Rootstock evaluation
- Comparison of propagation methods tissue culture (TC) vs stoolbed (SB)

What have we observed

Tree Size 2012 & 13 Height & Diameter

Fruit Quality

No significant differences

Between rootstocks

- Color
- Soluble solids (^oBrix)
- Firmness (kg)
- Starch content

Fruit Size

Gala

G.202 fruit smaller than G.202TC & G.41 stock

Cripps Pink

Not significantly different by root

Gala Yield

Yield per Tree (kg)

G.202 – significantly lower yields each year 2013-2015

Cumulative Yield 2012-15 (kg)

G.202 – Significantly lower cumulative yields

Cripps Pink Yield

Pink Lady - Yield per Tree (kg)

No significant differences in Yield between rootstocks

2014 2pt. Sevin

2015 2pt. Sevin + 64 oz. Maxcel

Brookfield Gala			Cripps Pink				
							X
							X
							X
							X
X	X						
				X			
				X			
				X			
				X			
						X	
						X	
							X
					X		X
					X		X
			X				
			X	X		X	
				X			
							X
				X		X	
				X		X	

Gala

(not significant)

- G.202TC (3)
- G.935 (1)

Cripps Pink

- G.202 and G.202TC nearly 100% survival
- G.41 (13)
- G.935 (9)

G.41 Cripps Pink

4/25 bloom
5/4 bloom
storms/wind
30 mph
5/8
6/9 high
Wind 40 mph/hail

Observations

A few thoughts

- TC trees are big
- Fruit Quality not significantly different between rootstocks 2012-2015
- Gala on G.202: significantly smaller fruit and lower yields (annual and cumulative)but trees hold up
- Cripps Pink Tree Losses: Significantly higher tree losses for G.41 and G.935 than G.202 and G.202TC
 - All graft union breaks in severe wind

Continued

- Graft union strength may be variety specific
- High Density Systems: Management may prove to be a challenge in the Mid-Atlantic
- Continue Regional Field Testing: Tailor scion/rootstock selection & management to region
- Project to dissect graft unions: learn exactly what the default is how soon it shows up
- Develop a "fast" diagnostic tool determine the likelihood of incompatibility

Thank you

Horticultural Society