Evaluation and Demonstration of New Stone Fruit Systems

Goals of an "Ideal" System:

- Valuable Crop
 - Variety
 - Size and Quality
- Early yield & ROI
- Sustained High Marketable Yields
 - Light interception
 - Light distribution
- Labor efficient production
 - Minimal ladder use
 - Simple tasks

System Components

- Genetic
 - Variety
 - Rootstock
- Tree arrangement
- Tree spacing
- Pruning

Missing Key: Dwarfing Rootstock

	Vigor	
<u>Rootstock</u>	(% of Lovell)	<u>Issues</u>
Bailey	90%	Large tree
Empyrean®2 (Penta	a) 90%	Large tree
Empyrean®3 (Tetra)	90%	Large tree
Controller 9	90%	Large tree
Controller 6, 7, 8, 8.	5 ????	Too new
Controller 5	50%	Discontinued
		(anchorage)

Missing Key: Dwarfing Rootstock

	Vigor	
Rootstock	(% of Lovell)	<u>Issues</u>
American plum	70%	Rootsuckers
Fortuna	70%	Survival
Imperial California	90%	Survival
Ishtara	70%	Survival
Krymsk 1	75%	Survival
Krymsk 2	60%	Survival

Missing Key: Dwarfing Rootstock Cumulative Mortality in Biglerville, 2013

Rootstock	Year of Planting	Mortality (%)
Fortuna	2009	38
Ishtara	2008	70
Krymsk 1	2008 & 2009	40 & 50
Krymsk 2	2008	40
Imperial California	2009	100

Missing Key: Dwarfing Rootstock

- Dwarfing stocks remain a long-term goal
- Many are interspecific hybrids
- When size control is achieved:
 - Tree often appears stressed (incompatibility)
 - Fewer and/or small fruit
 - No increase in biological efficiency

Objectives:

- Evaluate
- 4 training systems: 172 484 trees / Acre
- 2 peach varieties:
 - Loring (conventional growth habit)
 - Sweet-N-Up (upright growth habit)

Upright Variety: Sweet N Up

Peach Systems Trial

Perp V, 484 T/A

Hex V, 242 T/A

Bird's Eye View

Quad V, 346 T/A

Open Center, 173 T/A

Bird's Eye View

Cumulative Yield, 2009-2013:

Yield per tree by year, Loring

2013 Fruit Size Distribution, Loring

Peac(inches)

Cumulative trunk growth, 2007-13

Trunk Growth by Year

2013 Yield Efficiency

Blush coverage (%), Loring 2012

Income over specified costs / A

Sweet N Up						
	2009	2010	2011	2012	2013	Cumulative
OC14	\$ 1,741	\$ 633	\$ 2,014	\$ 4,575	\$ 6,953	\$ 15,916
HV10	\$ 2,938	\$ 2,283	\$ 4,534	\$ 9,930	\$ 8,241	\$ 27,927
QV7	\$ 2,556	\$ 240	\$ 4,255	\$ 9,628	\$ 9,551	\$ 26,231
PV5	\$ 2,809	\$ (162)	\$ 2,169	\$ 5,871	\$ 6,072	\$ 16,795

Income over specified costs / A

Loring						
	2009	2010	2011	2012	2013	Cumulative
OC14	\$ 1,246	\$ 1,764	\$ 3,880	\$ 7,455	\$ 6,625	\$ 20,970
HV10	\$ 1,647	\$ 3,311	\$ 6,277	\$ 15 <i>,</i> 886	\$10,218	\$ 37,338
QV7	\$ 3,911	\$ 436	\$ 5,861	\$ 15,677	\$11,095	\$ 36,981
PV5	\$ 1,855	\$ 226	\$ 4,546	\$ 11,952	\$ 9,304	\$ 28,077

Why do V systems perform better?

- More linear bearing surface per acre
- Better light interception
- Training compatible with natural growth
- Less aggressive, 'retaliatory' growth
- They don't shade themselves excessively

Summary - Variety

Similar tree size for both

- Sweet N Up trees were taller (con)
- Loring Trees were wider (pro)
- Loring pulling away on cumulative yield
 - Sweet n Up had highest yield in 2009
 - Loring has been yielding more since 2010
- Advantage: standard spreading habit

Future Missing Key?

- Who will test future peach varieties?
- Trend to private breeding programs
- Trend to California varieties
- Loss of Extension personnel
- Answer: YOU WILL!

Summary

V systems

- Higher yield / A
- Redder fruit color
- More economic value
- More efficient use of land
- More bearing surface per acre
- More large fruit, more small fruit, more fruit
- Open center systems
 - Very slight savings on labor
 - Larger average fruit size
 - Less fruit, also less large fruit (per acre)
 - More wood

Take Home Message. 2012 & 2013 2014:

- Hex V at 10 x 18 & Quad V at 7 x 18
- Quad:
 - Easier to get 4 good scaffolds
 - Earlier Bu. / A = best system for high value crops
- Hex:
 - Similar performance to Quad V with less initial investment
 - Scheduled replacement of declining peach blocks

Questions Remain (2013/ 2014)

- Can we maintain higher yields in V systems as trees become mature?
 - Especially in lower canopy?
- Yields of all systems have continued to increase through 2013
 - PV5 is "catching up" to QV7 and HV10
 - Shoot vigor has migrated up in all systems,
 - Shoots in lower canopy of V trees still Ok.

Questions Remain (2013/ 2014)

- Can we achieve an optimal balance between high yield and fruit size?
- Yes! 2013 V system Loring yields > 600 BPA and large fruit size (with irrigation for final swell)

Peach Facts

- An peach fruit is ~<u>89%</u> water by weight
- ~10% by weight is carbohydrate $6CO_2 + \underline{12H_20} + \text{light} = C_6H_{12}O_6 + 6O_2 + 6H_2O$
- ~1% is mineral moved to the fruit by <u>water</u>
- Fruit growth occurs by <u>water</u> pressure (turgor)
- Deficits during final swell reduce size
- Irrigation is water insurance!

Questions Remain (2013/ 2014)

- Do Open Vase trees ever catch up, if so when?
- OC14 yield per tree = to HV10 in 2013
- No evidence that OC14 yield / acre will ever catch up as of 2013, 7th yr/ 5th crop
- Do we still care?

Goals of an "Ideal" System:

Valuable Crop

- Variety
- Size and Quality. Edge: HV / QV
- Early yield & ROI. Edge: HV / QV
- Sustained High Marketable Yields
 - Edge: HV / QV
- Labor efficient production
 - Minimal ladder use. Edge: OC
 - Simple tasks. Edge: V systems

Thanks For Your Support!

- HoffmanFoundation
- Pennsylvania
 Peach & Nectarine
 Board
- SHAP

Feedback From Growers

 "I liked your talk, and I'm going to plant Hex V, but I'm going to keep them short"

Peach Trees Want to Be Trees!

Natural growth habit: Acrotonic

- Vigorous growth is at the periphery
- Secondary buds near base of limbs are weak
- Species is INTOLERANT of shade
 - Shaded apple limbs will limp along for years
 - Shaded peach limbs DIE!

Other Methods of Restricting Tree Height

"Dilute" vigor between multiple scaffolds

- Two scaffold V:14.4 ft;
- Six scaffold V 13.9 ft. (3.5%)
- Not effective in peach

Pruning for Restricting V Tree Height

Heading of V-systems:

- in the upper half of a vigorous scaffold,
- upright branching angle,
- favorable light environment...
- Severing apical dominance stimulates regrowth
- Result: Shorter tree with more branches and worse shading than if it had been left tall

Summer shearing/ Dormant heading cuts no help

A Common Challenge: Bearing surface migrates up

Loss of Productivity in Lower Canopy

- Bearing surface migrates up
 - Shading partly responsible
 - Summer pruning/shearing to prevent shading?
- Renewal pruning not as successful as apple
 - Peach growth habit: acrotonic
 - Secondary buds at base of lateral are weak/ unlikely to grow out as new shoots

Pruning Goals: Fruit Size and Quality Sunlight and quality of Fruiting Laterals

- Eliminate excess fruiting laterals
 - Reduce crop density and shading
- Space fruiting laterals evenly up / down & radially on scaffold
 - Eliminate shade from limb crowding
- Eliminate long fruiting laterals
 - Reduce shading
- Eliminate small fruiting laterals
 - Promote higher Leaf : Fruit ratio

Std. Open Vase Peach System Open Vase Canopy

- Short height for ease of labor access
- Heavy pruning stimulates branch renewal
- Well-understood
- Oreates challenges:
 - Reduced yield and fruit color (low light interception / penetration
 - Less compatible with mechanization

Intensive Peach Systems Tall Narrow V Canopy

- Canopy split into 2 narrow tree walls
- Increased yield and fruit color
- Facilitates mechanization
- Creates challenges:
 - Tall tree + labor-intensive crop
 - Renewal pruning not as successful as apple

Pruning for Peach Crop Goals Open Vase orchard

350 bushel / A of large (3") fruit
= 35,000 peaches per A
140 trees/A = 250 peaches/ tree
5 scaffolds / tree = 50 peaches/ scaffold
At 3 peaches per fruiting lateral = 17
laterals

20% "safety margin" =

20 fruiting laterals / scaffold

Pruning for Peach Crop Goals Perpendicular V orchard

600 bushel / A of large (3") fruit = 60,000 peaches per A

400 trees/A = 150 peaches/ tree

- 2 scaffolds / tree = 75 peaches/ scaffold
- At 3 peaches per fruiting lateral = 25 laterals
- 20% "safety margin" =

30 fruiting laterals / scaffold

Open Vase Pruning

Thin out Upright & Pendant Secondary Limbs

Bench Cuts & Thin Laterals

Heading Cut in Open Vase: The Bench Cut

Essential to low headed open vase system Slows ascent of canopy (+) Contributes to a loss in productivity (+) Increases risk of canker infection (-) Stimulates vigorous regrowth in canopy Stimulates renewal shoots (+) Shades lower canopy, with loss in productivity/ quality (-)

Pruning Perpendicular V

Reduce / Thin Out Secondary Limbs

Renewal: 2ndary Limbs Cut Back to 1st Strong Fruiting Lateral

Pruning Fruiting Laterals

- Dormant heading releases lateral buds from apical dominance
- Dormant heading leaves basal buds to set crop (not the best).
- Summer shearing = many heading cuts

Peach Pruning Demo

- 6 Feb (Next Thursday)
- Rich Marini
- Jim Schupp
- V and OC systems
- Hands on!