Fungicide Resistance Management

Part 1 – Evolution of Resistance

Norman Lalancette, Ph.D. *Extension Specialist in Tree Fruit Pathology*

Rutgers Agricultural Research and Extension Center Bridgeton, New Jersey

Evolution of Fungicide Resistance

Individual organisms have the ability to:

- grow,
- differentiate, and
- respond to environmental changes

Pathogenic Fungi

"Trained" to grow at ever higher concentrations ...

- Metal toxicants
- DMI fungicide triforine

Evolution of Fungicide Resistance

Phenomic Adaptation (general)

Physiological adjustment of an individual organism without change in genetic constitution

Non-Genetic Resistance (specific)

Pathogenic fungus alters its physiology, enabling growth in a fungicide amended environment

Evolution of Fungicide Resistance Non-Genetic Resistance

Little Practical Importance for Agriculture

- 1. If fungicide removed ... resistance immediately lost (becomes sensitive)
- 2. No genetic change ... no inheritance of these acquired characteristics

Evolution of Genetic Resistance

Evolution of Fungicide Resistance Development of Genetic Resistance

Probability of developing fungicide-resistant plant pathogens is dependent on:

Factors Influencing Evolution of Resistance

- 1. Rate of mutation of genes conferring resistance
- 2. Rate of selection for these mutants

Evolution of Fungicide Resistance Definitions of Mutation

Mutation

Def. #1: A heritable change in the genetic material of an organism

Def. #2: A change in the sequence of nucleotide bases in the DNA polymer

Types of Mutations – Examples

Deletion

- Duplication
- InsertionInversion

Evolution of Fungicide Resistance *Characteristics of Mutations*

- Mutation is a <u>chemical process</u>
- Important mutagenic agents:
 - Temperature, radiation, chemicals
- Low population frequency
 - ➤ 1 x 10⁻⁴ to 1 x 10⁻⁹
 - Occurrence of dodine-resistant Venturia inaequalis mutants is 1 in 1,385,714
- Most mutations are deleterious

Evolution of Fungicide Resistance Characteristics of Mutations

What about Fungicides?

Some fungicides are mutagens at high concentrations, but ...

No evidence that directed mutagenesis occurs at doses used in practice

Evolution of Fungicide Resistance Characteristics of Mutations

Do mutations result in fungicide resistance?

Not entirely ...

• Selection for the resistant strains must occur next ...

Evolution of Fungicide Resistance

Selection for Resistant Strains

Evolution of Fungicide Resistance Selection for Resistant Strains

Evolution of Fungicide Resistance Selection for Resistant Strains

Fungicide-Sensitive Subpopulation Fungicide-Resistant Subpopulation

Will application of the fungicide select for resistance?

Not necessarily!

Fungicide resistance is only one of many traits that bestow *fitness*!

Evolution of Fungicide Resistance Selection and Fitness

One organism is more *fit* than another if it has:

1. Greater reproductive potential

2. Greater success of survival

Fitness – relative reproductive success

The organism with greater *fitness* will have more of its genes present in succeeding generations

Evolution of Fungicide Resistance Fitness Attributes of Fungal Plant Pathogens

Epidemiological Fitness Parameters

- Colonization
- Sporulation
- Latent period
- Infection efficiency
- Temperature range
- Moisture range and so on
- Fungicide resistance

Selection for other fitness parameters important to survival of newly resistant strain

Evolution of Fungicide Resistance Selection Process

Multidimensional ... consists of two phases

- **1.** Selection for resistance regardless of other traits
- **2.** Progressive organization of the genetic background for greater fitness (esp. via genetic recombination)

The longer the selection process in step 2 ("*aging*"), the greater the <u>persistence</u> of the resistant population; i.e., resistant pathogen becomes <u>more fit</u>

Evolution of Fungicide Resistance Summary of Process

Development of a Resistant Population

- **1.** Mutation in DNA bestowing resistance
- 2. Multidimensional selection process
 - Selection for resistance trait
 - Selection for other fitness parameters

FUNGICIDE RESISTANCE MANAGEMENT

PART 2 – FUNGICIDE CHEMISTRIES

Kari Peter, Ph.D. Assistant Professor - Tree Fruit Pathology Department of Plant Pathology and Environmental Microbiology

Penn State Fruit Research and Extension Center Biglerville, PA

College of Agricultural Sciences

Fungicide Chemistries

Fungicide 101

•Fungicide Basics

- Protectant vs Penetrant
- Mode of action: single site vs multi-site

• Fungicide Resistance Action Committee (FRAC): Group codes

- Knowing the fungicides
 - Group Trade name Fungicide family Common Name
- Risk

Fungicide Chemistries Fungicide Basics: Protectant vs. Penetrant

Penetrants = Systemics

- "Contact"
- No movement into plant
- Applied prior to infection
- Needs to be re-applied
 - New growth
 - Not rainfast

Examples: Manzate, captan, copper

- Absorbed into plants following application
 Rainfast
- Less thorough coverage to be effective
- Protectant and/or "curative":
 - Inhibit/slow fungal growth
 - During early stage of infection
- Examples: Vangard, Flint, Pristine

Disease Management Strategies-Purdue Extension

Fungicide Chemistries Fungicide Basics: Mode of Action (MOA)

The specific way fungicide poisons the fungus: Disrupts important biochemical processes causing the fungus to die

Fungicide Chemistries

Fungicide Basics: Fungicide Resistance Action Committee (FRAC)

FRAC: www.frac.info

- Established codes for fungicides based on their mode of action (FRAC Code)
- Get to know your fungicide label: Importance of <u>FRAC group codes on fungicide labels</u>

QU POND.	
DuPont [™]	
Fontelis™	
fungicide GROUP	FUNGICIDE
Suspension Concentrate	
Active Ingredient	cheo dece, De Weinhe
Penthiopyrad	RESISTANCE MANAGEMENT
Other ingredients	—— Repeated use of products for control of specific plant pathogens may lead to selection of resistant
TOTAL	strains of fungi and result in a reduction of disease control. Penthropyrad, the active ingredient in
Contains 1.67 pounds of penthiopyrad per gallon of product	FONTELIS™, is one of EPA's Target Site of Action Group 7 fungicides (carboxamides). A disease
EPA Reg. No. 352-834	management program that includes rotation and/or tank mixing with non-Group 7 fungicides is
	essential to reduce the risk of fungicide resistance development. For guidance on a particular crop and
	disease control situation, consult your state extension specialist for official state recommendations.

THE REPORT OF A DESCRIPTION OF A DESCRIP

Fungicide Chemistries Fungicide Basics: Knowing the fungicides

Mode of Action	FRAC Group	Trade Name	Fungicide Family	Common Name	Protectant /Systemic
Single-site	1	Topsin M®	Benzimidazoles/MBC	Thiophanate- methyl	Systemic
Single-site	3	Rubigan® Indar® Rally®	DMI/SI	fenarimol fenbuconazole myclobutanil	Systemic
Single-site	7	Pristine [®] (7 + 11) Fontelis [®]	Carboxamides/SDHI	boscalid penthiopyrad	Systemic
Single-site	11	Pristine [®] (7 + 11) Flint [®]	Strobulurins/QoI	pyraclostrobin trifloxystrobin	Systemic
Multi-site	M1	Kocide [®] , Nu-Cop [®]	Inorganic	copper salts	Protectant
Multi-site	М3	Carbamate [®] Dithane [®] , Manzate [®]	Dithiocarbamates (EBDC)	Ferbam Mancozeb	Protectant

Products with the **same FRAC number**: <u>Behave similarly = cross resistance</u> *Except "M" = multi-site Products with **different FRAC numbers**: <u>Act differently</u>

Fungicide Chemistries Fungicide Basics: Fungicide-Associated Risk

Knowledge of mode of action: assessing positive indicators of risk

- Single site vs. multi-site
- Site of action known to become resistant to other fungicides

- High: Products having single-site of action Disease resistant populations have been discovered in more than one target pathogen
- Medium: Mutation of more than one target site Resistance formation is less frequent
- Low: Very rare or undocumented occurrence of resistance

Fungicide Chemistries Fungicide Basics: Fungicide-Associated Risk

Brent, K.J. and Hollomon, D.W. 2007. Fungicide Resistance in Crop Pathogens: How Can It Be Managed? Fungicide Resistance Action Committee

Fungicide Chemistries Fungicide Basics:Fungicide-Associated Risk

Mode of Action	FRAC Group	Trade Name	Fungicide Family	Common Name	Protectant /Systemic	Risk
Single-site	1	Topsin M [®]	Benzimidazoles/MBC	Thiophanate- methyl	Systemic	High
Single-site	3	Rubigan® Indar® Rally®	SI	fenarimol fenbucanazole myclobutanil	Systemic	Medium Medium Medium
Single-site	7	Pristine [®] (7 + 11) Fontelis [®]	Carboxamides/SDHI	boscalid penthiopyrad	Systemic	Low – Med Med – High
Single-site	11	Pristine® (7 + 11) Flint®	Strobulurins/QoI	pyraclostrobin trifloxystrobin	Systemic	Low – Med High
Multi-site	M1	Kocide [®] , Nu-Cop [®]	Inorganic	copper salts	Protectant	Low
Multi-site	М3	Carbamate [®] Dithane [®] , Manzate [®]	Dithiocarbamates (EBDC)	Ferbam Mancozeb	Protectant	Low

Products with the **same FRAC number**: <u>Behave similarly = cross resistance</u> *Except "M" = multi-site Products with **different FRAC numbers**: <u>Act differently</u>

Fungicide Chemistries Fungicide Basics: Take Home Messages

Pay attention to FRAC codes on the fungicide label

- FRAC codes based on mode of action (MOA)
- Site-specific = systemic = Risk for resistance
- Multi-site = protectant = Low risk for resistance

Products with the **same FRAC number**: <u>Behave similarly = cross resistance</u> (*Except "M" = multi-site)

Products with **different FRAC numbers**: <u>Act differently</u>

Fungicide Resistance Management

Part 3 – Management Strategies

Keith Yoder

Research and Extension Tree Fruit Pathologist Dept. of Plant Pathology, Physiology, and Weed Science

Virginia Tech Agricultural Research and Extension Center Winchester, VA

Resistance Management Considerations

Factors affecting on-set of resistance (apple scab): Selection pressure: heavy inoculum X heavy fungicide use Use history – number of applications in the orchard Long-term disease pressure- over the years; weather conditions affect selection pressure; fungicide residual Proximity to neighboring orchards with resistance Indications of problem: **Unexplained control failure** Lab test is best indicator of current resistance status Ultimately YOU decide if you are satisfied with control and what to do differently if you're not

Resistance Management Considerations

On-set of resistance in an orchard: Benzimidazoles- Topsin M, Benlate; 20 applications in orchard Qols (strobilurins) - Flint, Sovran- 25 apps.; Pristine? SIs (sterol-inhibitors, DMIs, EBIs)- Rally, Rubigan, Procure; 10-30 apps at low rates, 60 or more apps. at high rates Dodine - Syllit, (Cyprex); 60 apps. APs (anilinopyrimidines) - Vangard, Scala SDHI's – moderately high risk??? Fontelis, fluopyram in Luna Sensation and Luna Tranquility, fluxapyroxad in Merivon.

Koller

Classes of apple fungicides at risk for development of resistance

FRAC Chemical class	Compound	Trade name(s)
Strobilurin (Qol)	kresoxim-methyl	Sovran
(Group 11)	trifloxystrobin	Flint
	pyraclostrobin + boscalid	Pristine
Carboximide (SDHI)	boscalid + pyraclostrobin	Pristine
(Group 7)	(not a carboximide)	
	penthiopyrad	Fontelis
	fluopyram + trifloxystrobin	Luna Sensation
	fluopyram + pyrimethanil	Luna Tranquility
	fluxapyroxad + pyraclostrobin	Merivon
Guanidine	dodine	Syllit, Cyprex
Sterol inhibitors (SI)	myclobutanil	Rally (Nova)
(Group 3)	triflumizole	Procure
	fenbuconazole	Indar
	difenoconazole+ cyprodinil	Inspire (Super)
	flutriafol	Topguard
Anilinopyrimidine (AP)	cyprodinil	Vangard
(Group 9)	pyrimethanil	Scala, Penbotec
	cyprodinil + difenoconazole	Inspire (Super)
Group 29	fluazinam	Omega

Resistance Management Considerations

General strategies to off-set resistance: Selection pressure: heavy inoculum X heavy fungicide use **Reduce inoculum and break up fungicide schedules** Long-term disease pressure-**Strategy must consider overall disease spectrum**

Practical Considerations for Fungicide STRATEGIES to Offset Resistance

Mid-Atlantic Fungal Apple Diseases

Early season

- Scab drives early season spray schedule Resistance to SIs and QoIs common in Frederick Co. VA
- Mildew -only dry weather disease SI resistance since 2004 & now QoI at VT-AREC.
- Cedar-apple and quince rusts-needs for control (locally)
- 'Summer' diseases- more severe problems in south
 - Sooty blotch / fly speck as many as 60 different fungi
 - Brooks fruit spot- 2nd cover
 - Alternaria and Glomerella leaf blotches (specific cvs.)
 - Rots (frogeye leaf spot/black rot, bitter, Bot, others)

Resistance Management Strategies

Reduce inoculum levels / reduce selection pressure Choose fungicides based on disease spectrum Include a protectant for every disease Minimize use of "at risk" classes of fungicides (After-infection applications increase selection pressure) Rotate classes, always in combination with protectant

Resistance Management Strategies

Utilize copper spray for fire blight and scab (before 1/4" green on fresh market fruit; or later for processing) Include a scab protectant with all "at risk" fungicides Choice of general protectant based on rust pressure, cost, and compatibility with oil (EBDCs, ziram vs. captan) Vangard or Scala, dodine?, at $\frac{1}{2}$ green (don't control rusts) or mildew Always avoid use of SIs, QoIs and SDHIs alone. Use mixtures or protectants where applicable Consider alternating schedules of mixtures that may

- involve the several "at-risk" groups
- Consider practices that reduce selection pressure (urea)

Use of urea to reduce scab inoculum

- Apply urea (40 lb/A) just before leaf drop
- Cover trees and ground to wet leaves which have already fallen

 Shredding leaf litter with a flail mower may have some similar effects on leaf breakdown (Also for Alternaria and Glomerella leaf blotches, and Brooks spot)

The early season management problem:

Economical control of scab, rusts and mildew Scab- year-to-year inoculum level?; resistance status?

Powdery mildew- chronic effects on yield (20% lvs inf.)

- inoculum buildup without SI use
- Cedar-apple and quince rusts- local problems
 - leaf infection into June some years
 - heavy fruit infection some years
 - yield effects

Effect of Rally/Topguard, other SIs on cedar/quince rusts Positioning of newer fungicides?

Indar 2F, Inspire Super ok if there isn't SI resistance

Luna Sensation?, Merivon?, Luna Tranquility, Fontelis?

Resistance Management Strategies

Plan fungicide schedule with long-term use in mind

Tight cluster- 2nd cover

- scab first concern; esp. resistance issues;
- Keep something in schedule for mildew, if needed (SDHI, SI, strobilurin, sulfur, other)?
- include something for rusts, if needed
- Plan for season-long options 1st choice; 2nd choice
- Issues about number of apps. / year (package mixes)
- Use mixtures with protectants as much as possible
 reduce likelihood of resistance
 - reduce internitiou of resistance
 - reduce damage in year resistance appears
 - slows rate of epidemic; more forgiving
- Can't prescribe one program for everyone!

18-yr history of foliar scab control with SI+EBDC Stayman apple, Winchester, VA (VARP)

- Generally poorer and variable control since 2004.
- Credit control in 2006-07 & '10 to EBDCs (dry years).

Control of % leaves infected with mildew by selected fungicides Stayman and Idared apples, 1994-2010, Winchester, VA

'08-09: SIs less effective after 9.8 A treated; QoIs after 4.8 A!

Questions/comments?

Evolution of Resistance

