

Biology and Management of Bacterial Spot of Stone Fruit

Sarah J. Bardsley

College of Agricultural Sciences, Department of Plant Pathology and Environmental Microbiology, Penn State University, University Park, PA 16802

Overview

- Bacterial Spot
 - Symptoms
 - Disease Cycle
 - Management
 - Current Research

Severe early season bacterial spot lesions on an immature peach

Bacterial Spot

- Most Important Bacterial Disease of Peach and Nectarine
- Xanthomonas arboricola pv. pruni (Xap)
- Japanese plum, almond, apricot, pluot, & aprium

- Yield Limiting Symptoms
- 100% Fruit Loss Observed
- Georgia (2005): \$4.8 Million Lost
- Few Effective Controls

Bacterial Spot Symptoms - Fruit

- Early Season Lesions
 - Irregularly shaped
 - Extend deep into fruit

- Late Season Lesions
 - Shallow
 - Skin Cracking

Bacterial Spot

- Bacteria
- Angular lesions
- No lesion pattern
- Surface pitting
- Foliar symptoms
- Lesions are not fuzzy

Peach Scab

- Fungus
- Circular lesions
- Lesions form pattern
- No fruit surface pitting
- No foliar symptoms
- Dark olive-brown, fuzzy lesions

Foliar Bacterial Spot Symptoms

- Angular lesions
- "Shot-hole" appearance
- Yellowing
- Premature defoliation
- Copper & Captan injury
- Nutrient Deficiency

Bacterial Spot Symptoms - Twigs

Lack of vegetative growth

Overwintering site for bacteria

- Cankers
- Bark cracking
- Black Tip
- **Black Tip** Ritchie, D.

Bacterial Spot Management

- Three Main Strategies
 - -Less Susceptible Cultivars
 - Cultural Management
 - Chemical Bactericides

Cultivar Selection

- No cultivar completely resistance to bacterial spot
- Plant less susceptible cultivars
- Highly susceptible cultivars a source of inoculum
- Hide more susceptible cultivars inside orchard block
- Long-term strategy

Cultural Management

- Site Selection
 - Well draining soil
 - Avoid low spots
- Weed Management
- Reduce Tree Stress

- Pruning
 - Increased airflow
 - Remove cankers
- Reduce Dust

Severe flooding in peach orchard (clemson.edu)

Bactericide Applications

- Copper
 - Dormant & cover sprays
 - Phytotoxic
 - Risk of resistance
- Oxytetracycline
 - Up to 10 applications per season
 - Risk of resistance
 - -Label limitations
- Avoiding spraying when leaves are wet

Refining Management

- Disease progress
 - Target weak points
- Defoliation
 - Significant factors
- Age-related resistance in fruit
 - Reduce chemical usage

Refining Management Disease Progress

- Variability
- Defoliation
- Significant Influences:
 - Bactericide
 treatment
 - Cultivar

Bacterial spot progress curves do not follow standard disease progress curves due to abscission of heavily infected leaves

Refining Management – Defoliation

- 1,460/ 3,052 leaves abscised
- Factors
 - Leaf age
 - Cultivar
 - Bactericide Treatment
 - Initial Disease Onset
- Older leaves
- Beekman and Snow King

For every small increase 1 of initial disease severity, the time the leaves remain on the tree is greatly reduced

Refining Management Age-related Resistance

- Fruit infec deve
- Expo susce
- Impli redu use
- Limit – Cu

- Fire blight (*Erwinia amylovora*)
 - Streptomycin
 - Michigan, California,
 Washington, Oregon,
 and Missouri
- Bacterial Spot (Xap)
 - Oxytetracycline
 - Michigan

Genetic Mutation

Bacterial spot pathogen (Xap)

Oxytetracycline resistant bacterial spot pathogen

Genetic Mutation

Bacterial spot pathogen (Xap)

Oxytetracycline resistant bacterial spot pathogen

Genetic Mutation

Bacterial spot pathogen (Xap)

Oxytetracycline resistant bacterial spot pathogen

Acquired Resistance

Oxytetracycline resistant nonpathogenic bacteria

Acquired Resistance

Bacterial spot pathogen (Xap)

Oxytetracycline resistant bacterial spot pathogen

Oxytetracycline resistant nonpathogenic bacteria Nonpathogenic bacteria

Acquired Resistance

Bacterial spot pathogen (Xap)

- **Oxytetracycline resistant bacterial spot pathogen**
- **Oxytetracycline resistant nonpathogenic bacteria**
- Nonpathogenic bacteria

Research Goals and Objectives

- Goal: Gain a better understanding of the effects of oxytetracycline use
- Objectives:
 - Monitor and identify populations of bacterial epiphytes in stone fruit orchards
 - Determine current levels of oxytetracycline sensitivity of Xap (bacterial spot) isolates

Monitoring Bacterial Epiphytes

- 2012
 - 5 conventional
 - 2 organic
 - Adams, Delaware,
 Chester, and Lancaster
 Counties
- Bacterial colonies screened on 0, 10, and 25 mg/L oxytetracycline

Bacterial colonies growing on media amended with 25 mg/L oxytetracycline

Monitoring Bacterial Epiphytes

Pathogenic and nonpathogenic bacteria growing on media amended with 10 and 25 mg/L oxytetracycline were recovered from all orchards

Oxytetracycline Sensitivity

• 2011

- Collected 430 Xap isolates
- 6 commercial orchards
- 2 FREC blocks
- 2012
 - Collected 615 Xap isolates
 - 8 commercial orchards
 - 2 FREC blocks
 - Adams, Franklin,
 Chester, Delaware,
 Lancaster Counties

- No bacterial spot found in 2 organic peach orchards
- Management history collected
- To date, 317 Xap isolates have been screened

Oxytetracycline Sensitivity

Percent of Xap Isolates

Oxytetracycline Applications

Most *Xap* isolates grow at lower oxytetracycline concentrations regardless of the number of antibiotic applications. Mycoshield has a concentration of approx. 900 mg/L oxytetracycline.

Bacterial Spot Summary Management

- Poly-cyclic disease favored by warm, wet weather
- Disease development is influenced by bactericide treatment and cultivar
- Leaf age, cultivar, and initial disease onset are significant factors affecting defoliation
- Focus management on reducing initial levels of disease

Bacterial Spot Summary Antibiotic Resistance

- Antibiotic resistant bacteria (i.e.: nonpathogenic bacteria) found in all sampled orchards
- The number of antibiotic applications influences sensitivity of *Xap* isolates at higher concentrations of oxytetracycline

Acknowledgements

- Dr. Maria del Mar Jimenez-Gasco Thesis Advisor
- Dr. Henry K. Ngugi
- Dr. Marcie Lehman & Kari Showers Shippensburg University
- PSU Department of Plant Pathology & Environmental Microbiology
- PSU FREC Personnel: Brian Lehman, Mattie Kuntz, Bashar Jarjour, Terry Salada, and Noemi Halbrendt
 - Funding
 - United States Department of Agriculture (USDA)
 - Pennsylvania Peach and Nectarine Marketing Board
 - State Horticultural Association of Pennsylvania (SHAP)