MANAGEMENT OF BACTERIAL DISEASES **ON STONE FRUIT**

Kari Peter, Ph.D. Department of Plant Pathology and Environmental Microbiology Penn State University Fruit Research and Extension Center Biglerville, PA

kap22@psu.edu 717-677-6116 Ext. 223 @drtreefruit

Overview

Bacterial spot

Xanthomonas arboricola pv. pruni (Xap)

- Predisposing factors
- -Symptoms
- Disease Cycle
- Management

Bacterial canker

Pseudomonas syringae pv. syringae Pseudomonas syringae pv. morsprunorum

Bacterial Spot

- Predisposing factors favoring the occurrence of bacterial spot
 - Cultivar susceptibility
 Early bud break and early fruit ripening
 - Sandy and very clay soils
 - > ~ 86 °F temperature

Relative humidity of 100% over a period of 3 days = appearance of disease

Bacterial Spot Symptoms - Fruit

- Early Season Lesions
 - 3 weeks after petal fall
 - Irregularly shaped
 - Extend deep into fruit

- Late Season Lesions
 - Shallow
 - Skin Cracking
 - Secondary infection: brown rot

Bacterial Spot Symptoms - Fruit

- Peach Scab
 - Circular lesions
 - Dark olive-brown, fuzzy lesions

- Lesions form pattern
- No fruit surface pitting
- No foliar symptoms

Bacterial Spot Symptoms - Leaves

- Most susceptible before full expansion
- Angular lesions
- "Shot-hole" appearance
- Yellowing
- Premature defoliation
- Copper & Captan injury

Bacterial Spot Symptoms - Twigs

Cankers

- Lack of vegetative growth
- Bark cracking
- Overwintering site for bacteria

Black Tip

Bacterial Spot Disease Cycle

Courtesy A. L. Jones and T. B. Sutton.

Bacterial Spot Management

- Two Main Strategies
 - Resistant Cultivars
 - Not immune = Still need control measures
 - Chemical Products
- Copper
 - Dormant spray
 - Phytotoxic
 - Risk of resistance

- Oxytetracycline (Mycoshield, FireLine)
 - Suppresses bacteria
 - Up to 10 applications per season (**disease conditions)
 - Risk of antibiotic resistance
 - Short life span
 - Persistent yield loss
 - Label limitations

Bacterial Spot Management

Other considerations...

- Start applications late petal fall to early shuck split
- Spray 7 14 days according to conditions
- Rotating other chemicals with oxytetracycline
- Serenade Optimum (14 oz/A)
 - Works well in rotation
 - Can be tank mixed with oxytet
- For apricots, plums, etc: Cueva, Badge, Kocide, etc;
 Serenade Optimum, Double Nickel
 - ** Always double check the label**

Bacterial Spot Management: Copper recommendations (N. Lalancette, Rutgers)

	Cop	per Bactericides for Pe	ach Bacte	rial Spot Cor	ntrol	
Product Name	Formulation (metallic Cu)	Active Ingredient	REI	РНІ	Post-bloom Application Rate/A	
					Label	Recommended
		0 Day	PHI			
Kocide 3000	30DF	Copper hydroxide	48 hr	0 days	4.0 – 8.0 oz	1.7 oz
Cueva	0.16F	Copper octanoate	4 hr	0 days	0.5 – 2.0 gal	25 fl oz
		21 Da	y PHI			
Nordox	75WG	Cuprous oxide	12 hr	2nd cover	10.7 oz	0.7 oz
Nu-Cop	50DF	Copper hydroxide	48 hr	21 days	1.0 - 3.0 lb	1.0 oz
Mastercop	0.54SC	Copper sulfate pentahydrate	48 hr	21 days	4.0 – 8.0 fl oz	7.4 fl oz
Champ Formula 2 Flowable	2.93F	Copper hydroxide	48 hr	21 days	none provided	1.4 fl oz
COC DF	50DF	Copper oxychloride	24 hr	21 days	1.0 lb	1.0 oz
Copper-Count-N	0.77F	Copper diammonia diacetate complex	48 hr	21 days	1.0 qt	5.3 fl oz
Badge X2	28DF	Copper oxychloride + copper hydroxide	48 hr	21 days	8.0 oz	1.8 oz

Recommended rate based on the metallic copper concentration of 0.5% = 1XCan increase concentration to 2X ($1\% \rightarrow$ multiply current recommended rate times 2)

** Be sure to monitor shoot s for increase in defoliation when using 2X rate**

Bacterial Spot Management

If your crop was frozen out: you still need to control for bacterial spot!

- If you don't control the disease in no-crop years:
 - Build up of inoculum—issues for subsequent years
 - Stress defoliation; weakens tree making it more susceptible to bacterial spot in coming years
 - Also holds true for CHERRY LEAF SPOT!

Overview

Bacterial spot

Xanthomonas arboricola pv. pruni (Xap)

Bacterial canker

Pseudomonas syringae pv. syringae Pseudomonas syringae pv. morsprunorum

- Predisposing factors
- -Symptoms
- Disease Cycle
- Management

Bacterial Canker

- Predisposing factors favoring the occurrence of bacterial canker
 - Training systems

Ranked in order of increasing vulnerability to canker infections

Least susceptible

Perpendicular V

Vertical Axis

Marchant

Vogel Slender

Spindle

Modified Central Leader

Spanish Bush

Most susceptible

Bacterial Canker

 Predisposing factors favoring the occurrence of bacterial canker

Cultivar susceptibility

Least susceptible

Sweetheart Lapins

Tehranivee

Hedelfingen

Regina

Most susceptible

Rootstock susceptibility
Gisela rootstocks highly susceptible

Bacterial Canker

- Predisposing factors favoring the occurrence of bacterial canker
 - Sandy and clay soils
 - Nutrient deficiency
 - High ring nematode populations
 - Winter pruning
 - Spring freezes (*May 2013 freeze; 2014 spring freeze)
 - Bacteria: Ice nucleation proteins & frost injury
 - Proteins allow water to freeze at higher temperatures resulting injury to the plant
 - Bacteria "feed" on the nutrients released by the injured plant tissue

Bacterial Canker Symptoms

Fruit

Leaves

- Sporadic
- Water soaked lesions
- Chocolate brown lesions

- Sporadic
- Necrotic lesions, chlorotic rings
- "Shot hole" appearance
- Lesions occur along leaf margin curling effect

Bacterial Canker SymptomsBranches and Trunk

- Facilitated by stress
 - Spring frost
 - Severe winter freezes
 - Water soaking
 - Blossom infection
 - Pruning wounds
 - Insect injuries
- Sunken bark
- Amber gummosis
- Girdled branches and trunks

- Limb and tree death
- Cytospora Canker

Bacterial Canker Favorable conditions - susceptibility

**Wind and rainstorms move the bacteria

Mid-April (cool, wet, frost injury):

- Bacteria overwintering in buds, cankers
- P. syringae populations increase 10 to 100 fold during bloom (blossom infection – blossom blast)

Summer:

- Humid, wet weather: symptoms on leaves and fruit
- Hot and dry conditions: P. syringae populations low

Autumn rains and cooler temperatures:

- P. syringae detected at high levels prior to and during leaf fall
 - *** Infection at leaf scars can be high

Early to mid-winter

- Bacteria overwinter in cankers, dead buds, healthy buds
- Exposed to severe temperatures increases chance of infection

Bacterial Canker Management

- Goal: reduce number of bacteria before trees enter susceptible period
- Using Copper*
 - Copper alone: evidence shows limited ability to control
 - Bordeaux mixture PLUS vegetable oil
 - 2.8 qts veg. oil/100 gal
 - (described: http://jerseyfruitagupdates.blogspot.com/2012/09/spraycherries-for-bacterial-canker.html)
 - Sept, Oct, Nov, and in spring
- Pruning*
 - Avoid large dormant cuts
 - Minimize impact of disease with summer pruning
 - 12 inch rule: distances infection from the main trunk
 - "Ugly stub"

Bacterial Canker Management

- Remove/Prevent tree stressors
 - Plant in well drained soils
 - Maintain adequate nutrients
 - Weed control: weeds support populations of bacteria
 - Remove wild Prunus
 - Do not interplant new trees with old trees
 - Old trees source of bacteria

Take home messages:

Maintain healthy trees!

FORG

Bacterial spot

Resistant cultivars

Warm, humid temps favor high bacterial populations
Dormant copper sprays; reduced rates during the season
Oxytetracycline – favorable conditions throughout the season
Still need to control with or without crop

Bacterial canker

Susceptibility of rootstocks and cultivars

Spring freezes, cool fall weather promote disease

Mindful pruning – summer (low bacteria numbers)

Limited control options

MANAGEMENT OF BACTERIAL DISEASES **ON STONE FRUIT**

QUESTIONS? Kari Peter, Ph.D.

kap22@psu.edu W@drtreefruit

PENNSTATE

College of Agricultural Sciences