Peach Genetics and Breeding for the Future

Ralph.scorza@ars.usda.gov
USDA-AFRS

Our Goals -

Develop New Fruit Varieties with:

- Improved Fruit Quality and novel fruit traits
- Improved Disease Resistance
- Improved Growth Habit
- Methods for genetic engineering of tree fruits
- New, more rapid and efficient breeding methods
What have we achieved in the past?
Stone Fruits released from AFRS

NectaFest (N) (UP) July 20-Aug 5

EarliScarlet (N) July 25-Aug 10

Sentry July 20-30

Crimson Rocket (PI) Aug 15-Aug 30

Bounty Aug 20-Sept 10
Flavrburst peach Aug 20-Sept 10

SummerFest (UP) Aug 30-Sept 20

Sweet-N-UP (UP) Aug 25-Sept 10

TruGold peach August 1-10 (true from seed)
European (prune) plums

Bluebyrd
(black knot resistant)
early Sept

Orablue (extra large size)
Mid Sept-early Oct

HoneySweet
(PPV and black knot resistant)
early Sept
Pears

richard.bell@ars.usdagov

CLASSICAL BREEDING - HIGH QUALITY FRUIT VARIETY RELEASES:

Blake’s Pride

Gem

Potomac

Sunrise

High Quality

Fire blight resistant

Shenandoah
Improved Disease Resistance
Bacterial leafspot + “super-sweet” fruit

Past - Classical Breeding Approach:

Cross resistant by susceptible
Evaluate spot
Choose best resistant
+ fruit quality
Future – Use molecular markers

- Isolate DNA from seedlings in the greenhouse.
- Eliminate susceptibles based on markers.
- Plant only resistant types in the field, evaluate fruit quality.

(One marker probably not enough for all spot races.)
Disease Resistance

Present/Future – Genetic Engineering

Plum pox virus Resistance
Making Prunus resistant by inserting part of the PPV genome into the plant DNA (strategy similar to vaccination, use the plants natural resistance mechanism)

‘HoneySweet’ is highly resistant to plum pox. Tested in field plots in Europe for 20 years with no reported natural infections. Approved for cultivation in the U.S.
Novel fruit attributes

....three recommendations for the fresh industry to increase consumption: reduced inconvenience, marketing beyond just health benefits and better cooperation along the supply chain. – Rabobank Report 2013
Not a bad peach. A bit messy though.....

Why do I always sit in the wrong seat!

Oops, now a sticky phone 😅

A candy bar would have been so much neater.......
In the late 1800s and early 1900s, Luther Burbank took on the challenge of creating a series of stoneless plums through a classic breeding approach of combining a poor quality fruit, nearly stoneless plum with commercial quality plums.

While he came close he was not entirely successful.
Improving Burbank’s ‘Stoneless’ cultivars by identifying the gene(s) responsible for stone development

Novel fruit attributes
THE FUTURE

Stoneless/seedless stone fruits
nectarines, peaches, plums, cherries, apricots, almonds!!!!

Novel fruit attributes
Improved growth habit

Past and Present - Classical Breeding:
Development of peach tree growth habits more suited to high-density production systems and mechanical thinning and harvesting.

Crimson Rocket, Sweet-N-UP SummerFest NectaFest were released and new selections are in the pipeline.
Improved growth habit

Extract DNA of PILLAR TREES → Gene Sequencing

DNA STANDARD TREES

FIND THE DNA THAT IS ONLY IN THE PILLAR TREES AND NOT IN THE STANDARD TREES OR ONLY IN THE STANDARD TREES AND NOT IN PILLAR TREES
We now know the genes that cause pillar, upright, weeping and dwarf peach tree growth!

We can use these genes as markers for growth habit in conventional breeding and for genetic engineering to produce trees in the desired shapes.
Improved growth habit

Changing a standard tree to a pillar tree
Improved growth habit

We are now entering a stage in technology where we can foresee changing tree growth through genetic engineering by single gene engineering or by using multiple genes to create entirely new forms for specific growing systems.
We are also investigating the development of GE dwarfing rootstocks in order to take existing popular rootstocks and add a dwarfing component.
New breeding methods

Traditional breeding of stone fruits is a 3-7 year cycle. Breeding, carried out in the field, is affected by climate, diseases, and insect pests. Not every year is successful.
New breeding methods

The Future

- Developing breeding systems based on genetically engineered early flowering parents, rapid cultivar development with a final product that is not genetically engineered.

Plum with a rapid flowering gene produces ripe fruit 9-12 months from seed. Normally, plum fruiting requires 4-6 years from seed planting.
Conventional Breeding program with 4yr/generation cycle

FasTrack Breeding program

Early flowering

Conventional

Two additional crosses

New potential varieties not GMO

http://ucanr.edu/sites/fastrack/
Simultaneous Development of Flowers and Fruit
‘FasTrack’ plums flowering and fruiting in the field April - August

Early summer

Mid summer

September
Early and continuous flowering and fruiting allows ‘FasTrack’ Breeding to be carried out in green- or screen-house.

We use genetic engineering to speed the breeding process but in the final set of crosses we only select the trees that are not genetically engineered for variety development.

We are working with plum breeders in California to more quickly develop improved prune varieties.
Why we need more rapid tree breeding

- Citrus greening
- Chestnut blight
- Plum pox virus
- Dutch elm disease
- Hemlock woolly adelgid
- African Fig Fly
- Pine Shoot Beetle
- Spotted Wing Drosophila
- Emerald ash borer
- Oriental fruit fly
- Asian longhorn beetle
- White pine blister rust
- Citrus canker
- Brown marmorated stink bug

Diseases and pests affecting trees and crops.
We need to hear from you with your questions, comments and hopefully your support