Microbiology of an Orchard Soil

David Eissenstat
Penn State University

2016 Mid-Atlantic Fruit & Vegetable Convention
Introduction

• Many kinds of microbes, both beneficial, neutral and parasitic
• Trophic levels: saprotrophs, predators, herbivores, parasites.
• Includes fungi, bacteria, arthropods (mites, insects, nematodes)
Outline

• Microbial communities and cultural practices
• Mycorrhizal and nonmycorrhizal fungal interactions with roots
 – Effects of root age and root growth rate
 – Effects of cropload and soil nutrient availability
• Root herbivores
Functional Roles of Soil Microbiology

- **Protozoa**
- **Bacteria**
- **Actinomycetes**
- **Oomycetes**
- **Fungi**
- **Nematodes**

Root development

- Nutrient cycling
 - N

Suppress plant pathogens

Lesion nematode

 кред: M. Mazzola
Bulk Soil vs Soil by Root (Rhizosphere)

• Area around root much richer in nutrients that microbes feed upon
• Bulk soil for microbes is like a microbial desert
• Vast majority of microbes located in rhizosphere.
• Microbial community composition of rhizosphere does not resemble that in bulk soil.
Plant-driven selection:

Rhizo-deposition accounts for 30-40% of total OM input to soils

- Organic acids
- Fatty acids
- Polysaccharides
- Enzymes
- Amino acids
Outline

• Microbial communities and cultural practices
• Mycorrhizal and nonmycorrhizal fungal interactions with roots
 – Effects of root age and root growth rate
 – Effects of cropload and soil nutrient availability
• Root herbivores
Mycorrhizas

• Arbuscular Mycorrhizal (AM) Fungi
• Fungal taxon Glomeromycota.
• Historically considered to be generalists but now specialization is being observed more frequently with molecular techniques
• Colonize by far the most diverse plant taxa of mycorrhizal fungi
AM Mycelium Infection Sites

- Hyphae enter the root into the cortex, penetrating the cell walls (but not the cell membrane-endomycorrhizas)

Smilacina racemosa. Woodland perennial with metacutnized (M) root cap and AM fungal hyphae (arrow). Mark Brundrett
http://www.ffp.csiro.au/research/mycorrhiza/
AM Arbuscule

• Finely branched in intimate contact with plant plasmalemma.
• Probable site for nutrient exchange

Arbuscule of *Glomus mosse*. (Bar = 10um)
Mark Brundrett;
http://www.ffp.csiro.au/research/mycorrhiza/
AM Cell Penetration

- Mycorrhiza fungal mass may represent a significant portion of the cell biomass.
- Thus an appreciable fraction of root biomass may be fungal

Glomus virsiforme arbuscule heavily branched in cell (bar 10 um); Mark Brundrett; http://www.ffp.csiro.au/research/mycorrhiza/
AM Vesicles

- Most AM fungi produce vesicles
- Often present in older roots
- Source of nutrient storage (rich in lipids)
- May also serve as propagules

Glomus vesicles (V) and intracellular hyphae in leek root (bar 100 um). Mark Brundrett: http://www.ffp.csiro.au/research/mycorrhiza/
Outline

• Microbial communities and cultural practices
• Mycorrhizal and nonmycorrhizal fungal interactions with roots
 – Effects of root age and root growth rate
 – Effects of cropload and soil nutrient availability
• Root herbivores
Taking a root-centric view on mycorrhizal and non-mycorrhizal fungi
Absorptive Apple Roots with Arbuscules
Nonmycorrhizal Fungi
Proportion of Young Roots Either Infected or Uninfected by Mycorrhizal or Nonmycorrhizal Fungi

<table>
<thead>
<tr>
<th>Type of root fungi</th>
<th>Fall 1997 (n=69)</th>
<th>Spring 1998 (n=44)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M fungi</td>
<td>28.1</td>
<td>42.3</td>
</tr>
<tr>
<td>NM fungi</td>
<td>50.0</td>
<td>11.5</td>
</tr>
<tr>
<td>Uninfected</td>
<td>21.9</td>
<td>46.2</td>
</tr>
<tr>
<td>M + NM fungi</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Resendes et al. 2008 *Plant and Soil*
Infection During Early Root Development

Resendes et al. 2008 *Plant and Soil*
Summary I

• Small differences in roots at birth might lead to very different microbial colonization
• Understanding variation at the individual root level with regards to traits like age, growth rate, and diameter may provide new insights into root-microbe interactions.
Outline

• Microbial communities and cultural practices
• Mycorrhizal and nonmycorrhizal fungal interactions with roots
 – Effects of root age and root growth rate
 – Effects of cropload and soil nutrient availability
• Root herbivores
Carbon Supply and Soil Microbes
Manipulation of Carbohydrates
Root Observations in Rhizotrons

• 20 rhizotrons (EUs)
 – Between 2 apple trees
 – Installed in May 2013
 – 4 plastic windows
Application of Nitrogen Patch

- **Control:** 20 mL de-ionized water
 - Applied weekly

- **Organic:** 5 g DW of ground apple leaves
 - Estimated 5% release of N weekly
 - Applied once

- **Urea:** 20 mL of 70 ppm N
 - Equivalent to organic release
 - Applied weekly
Addition of Localized Nitrogen Patch

Nitrogen Treatments

- Applied to 3 of 4 windows in each rhizotron
- 1 N treatment applied per window
- Applied at root emergence, May 31, 2013
Belowground Measurements

• Traced new root proliferation weekly

• Traced every other day, 3 to 5 days before harvest

• Traced daily, 3 days to harvest
 – Sept. 24 - Oct. 25, 2013
Root Harvest and Data Collection

- For both sampling dates
 - Removed plastic windows to harvest roots
 - Collected roots in tubes and stored at 4°C for analysis

- Root length and number by color
 - Scanned plastic from windows for image analysis
 - Recorded root length in WinRhizo Pro 2007
Quantification of AMF

• Microscopic observation
 – Trypan blue
 – Modified line-intercept

• Hyphal Biomass: Phospholipid fatty acid
 – AMF fatty acid indicator
 • 16:1\(\omega5c\)
 – Analyzed by Jared DeForest Lab
AMF colonization in apple

Colonization low and not clearly affected by cropping or fertilization
AMF colonization intensity.

Roots that are colonized are generally heavily colonized.
AMF Hyphal Biomass Increased Only in the Organic Patch
Carbohydrates and Nutrient Patches

- Reduced apple crops can increase overall root production
- No evidence that increased carbohydrates increased mycorrhizal colonization
- Some evidence of preferential extramatrical hyphal growth in organic rich patches
What about non-mycorrhizal fungal (NMF) infection of apple roots

• Do increased root carbohydrates decrease NMF infection?
• Do roots in nutrient-rich patches decrease NMF infection?
NMF infection not affected by cropping

No strong support for the hypothesis that roots in more favorable soil patches or with greater carbohydrate supplies caused by reduced apple crops limit NMF colonization.

Non-mycorrhizal fungi

Cylindrocarpon sp.
If a root is colonized by NMF, it is usually colonized along about 50% of its length.
• Mixed evidence that mycorrhizal fungi can limit infections by NMF
• Greater carbohydrate allocation belowground more clearly affected root growth than root colonization by microbes
• Organic matter additions may increase mycorrhizal hyphal proliferation
Outline

• Microbial communities and cultural practices
• Mycorrhizal and nonmycorrhizal fungal interactions with roots
 – Effects of root age and root growth rate
 – Effects of cropload and soil nutrient availability
• Root herbivores
Root herbivory in Peach

- Christina Wells, Michael Glenn
- Kearneysville, West Virginia
- Added Lorsban (wide spectrum insecticide)
Installing Minirhizotrons in Peach Study in West Virginia
Peach root survival

The influence of root age on herbivore removal

- young control
- young treated
- older control
- older treated

Fine Root Survivorship (%)
The graphs show the number of days until brown for control and insecticide treatments in 1996 and 1997.

In 1996:
- Control: n = 56
- Insecticide: n = 48

In 1997:
- Control: n = 21
- Insecticide: n = 17

A significant difference is observed between the control and insecticide treatments in 1997.
Summary III

• Root herbivory can be an unrecognized factor influencing roots in the orchard
• Herbivory most influential on the young, highly absorptive roots
• Herbivores also can increase root defense production, which reduces their uptake potential
Strategies to direct resident rhizosphere biology

Tillage

Fertility management

Plant-driven selection

Amendment based selection
 Compost
 Green manures
 Bio-based waste products

Well-drained soils
Acknowledgements

- Funding – College of Agricultural Sciences Ag Experiment Station, Plant Science (Horticulture) and ESM Departments, National Science Foundation

- Christina Wells, Michael Glenn, Mary Ann Resendes, David Bryla, Emily Lavely, Jianghong Zhang, Rich Marini, Rob Crassweller

- Special thanks to Mark Mazzola, USDA Wenatchee