HARD CIDER PRODUCTION: SANITATION, FERMENTATION, & STABILIZATION

By: Denise Gardner, Extension Enologist January 2015

Why Sanitation is Important...

- "Garbage-in equals garbage-out"
- Enhances your opportunity to minimize quality (and spoilage) problems
- Allows the cider maker more time to focus on stylistic decisions and creating a good quality cider
- Most problems that occur in hard cider production can be easily prevented with good sanitation practices

Cleaning vs. Sanitizing

- <u>Cleaning</u> [physical] removal of mineral and organic material or debris from equipment surfaces
- <u>Sanitizing</u> *reduction* of microorganisms through such means as addition of chemicals or heat (i.e. steam)

<u>(Sterilizing</u> – killing 100% of all viable microorganisms, associated spores, and viruses is rarely achieved in commercial processes)

Fugelsang & Edwards, 2007

Cleaning vs. Sanitizing

- Overall Considerations:
 - 1) Clean Rinse Sanitize
 - 2) Cleaning equipment does not imply that the equipment has been sanitized
 - 3) Improperly cleaned equipment cannot subsequently be sanitized
 - 4) Must always clean equipment before sanitizing (increases the efficiency of the sanitization step)

FDA Approved No-Rinse Sanitizers

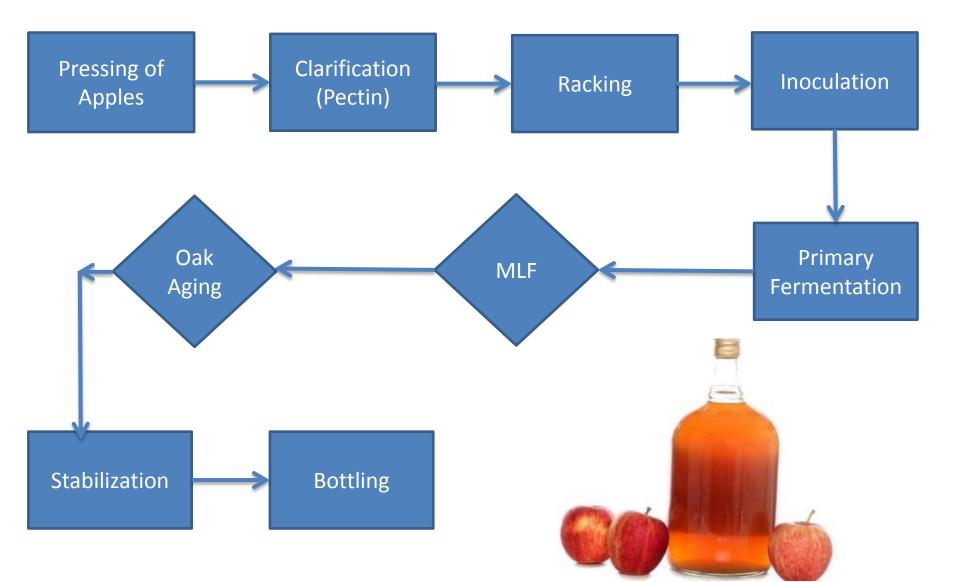
- <u>Sanitizers</u> an agent that reduces viable cell populations to acceptable lower numbers; used in sanitizing steps
 - List of FDA Approved No-Rinse Sanitizers
 - 1) Chlorine (Cl)
 - 2) Chlorine Dioxide (ClO₂)
 - 3) Iodophors
 - 4) QUATS
 - 5) Peroxyacetic Acid

FDA Approved No-Rinse Sanitizers

- <u>Sanitizers</u> an agent that reduces viable cell populations to acceptable lower numbers; used in sanitizing steps
 - FDA Approved No-Rinse Sanitizers
 - 1) Chlorine (Cl)
 - 2) Chlorine Dioxide (ClO₂)
 - 3) Iodophors
 - 4) QUATS
 - 5) Peroxyacetic Acid

Blue Represents Sanitizers Recommended for Hard Cider Producers

Acidulated SO₂ Sanitizer

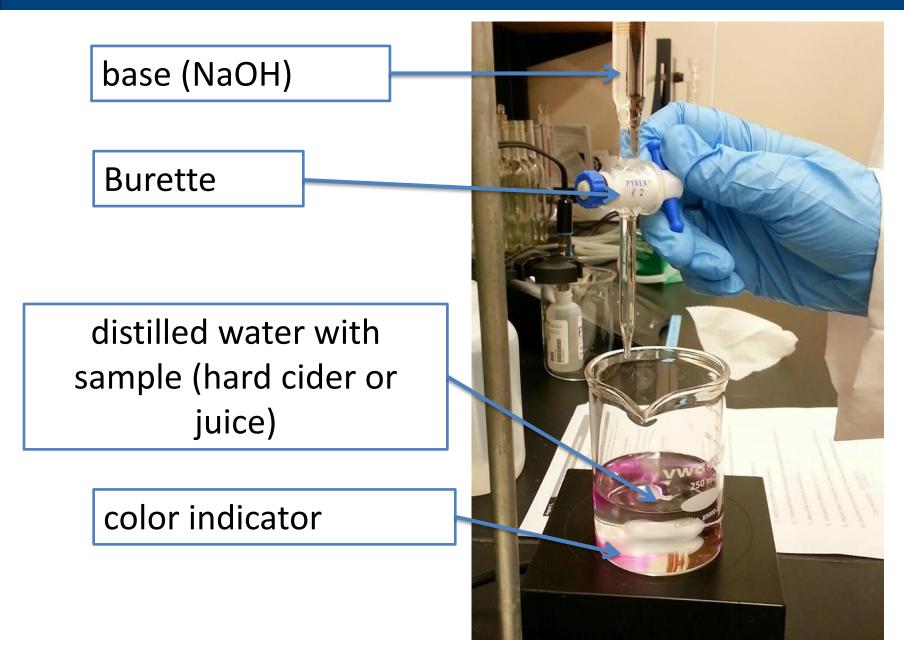

- Not an FDA approved sanitizer, but it is an option for cider producers
 - Easy to make regularly
 - SO2 is a natural preservative found in hard cider
 - Can bring the pH down from equipment treated with a basic cleaning or sanitizing agent (return to an acidic environment)
 - Need proper ventilation

Consideration of Steam

 Hot Water (>82°C/180°F): need to apply for <u>at least 20 minutes</u>, and the exit temperature of the water must be 180°F

 Steam: quicker than hot water and penetrates more hard-to-reach places (barrels, pores, cracks, behind gaskets, threads, etc.)

Hard Cider Production Flow Diagram



- Ideal sugar content:
 - Measure sugar with a refractometer or hydrometer
 - 1.060+ (specific gravity)
 or 14.74 °Brix (7.67%
 potential alcohol)

- Acid Composition
 - Pre-fermentation: malic (90%), quinic (up to 10%), & citric (1-2%)
 - Post-fermentation: contributes lactic and acetic acids
- Little buffering capacity in apple juice
 - Onset of fermentation can lower the pH (damage yeast, affect efficiency of fermentation)

- Acid Content
 - Measure of pH: determines stability and chemical properties
 - Ideal pH for hard cider is <3.8
 - pH <3.0: may want to raise slightly with potassium carbonate
 - pH >3.8: lower with addition of FG malic acid or a low pH juice
 - Measure of Titratable Acidity (TA): determines sourness or tartness of the cider
 - Ideal TA is 4.5 7.5 g/L malic acid

- Nitrogen Content
 - Measure YAN
 - Optimal YAN: between 150 200 mg N/L
 - Follow guidelines set by fermentation supplier
 - Consider yeast strain
 - YAN management during fermentation
 - Yeast hydration nutrient (e.g. GoFerm or Nutriferm Energy)
 - Yeast complex nutrient (e.g. Fermaid K or Nutriferm Advance
 - Possible addition of diammonium phosphate (DAP) for low YAN fermentations

- Pectic Enzyme Addition
 - Pectinase
 - Debourbage/Depectinization: Pectinase + Sparkolloid
 - Addition before fermentation
 - Ideal temperature: $60^{\circ}F(15^{\circ}C) \rightarrow SO_2$ addition required
 - Rack & inoculate
 - Keeving: Use of pectin methyl-esterase (PME) only +
 Calcium
 - Produces the "brown cap" (*chapeau brun*)
 - Juice under cap is clear & racked
 - Will not ferment fully; creates an off-dry to sweet cider

Allowing Cap Compression

http://www.cider.org.uk/keeving.html

Left carboy out at room temprature of 61° F (16° C) for 2-Hours so remaining chunks of lees built up enouh gas and bouyancy to rize and combine with the cap.

At this point I noticed the large gas bubbles forming indicating an exponential increase in ferment activity. To avoid this increasing ferment rate from blowing the cap apart contaminating and ruining the juice, I returnd the carboy to the pre-cooled refrigerator to cool the juce back to 42° F (5° C) and provide more time for the cap to compress and maximize juice yield.

http://cidersupply.com/Wild-Horton%20Keeving%20Page.html

- Yeast Fermentation and Management
 - Native fermentation (wild yeast) vs. commercial yeast strain inoculation
 - Yeast need oxygen for a healthy fermentation
 - Temperature controlled fermentation
 - Dry vs. sweet stylistic decisions during fermentation
 - Secondary (malolactic) fermentation

Production of Sweet Hard Ciders

- Production Methods
 - 1. Keeving Process
 - 2. Multiple Rackings
 - 3. Chilling & Filtration
 - 4. Pasteurization
 - 5. Addition of Sugar or Artificial Sweeteners
 - Sweetness Guidelines
 - Beer Judge Certification Program
 - Quebec Cider Regulations
 - French categories: Brut, Demi-sec, Doux

	Dry	Medium	Sweet
Residual Sugar (g/L)	0 – 9	9 – 40	>40
Residual Sugar (%)	0-0.9	0.9 – 4	>4

Adapted from: The New Cider Maker's Handbook, 2013

Use of Oak with Hard Cider

- Use of barrels
 - Difficult to clean & sanitize
 - May allow use of spontaneous fermentations (both primary & secondary)
 - Adds tannin & mouthfeel
 - Aging & oak flavor integration
 - Watch ullage
- Use of oak chips (dosage: 160 g/5 gal)
 - Oak flavor integration
 - Less expensive than barrels

Stabilization of Hard Cider

- Microbiological Stabilization
 - Sulfur Dioxide
 - Addition is based on pH
 - Ideal: 0.85 ppm molecular SO₂ addition
 - Potassium Sorbate (aka "Sorbate")
 - Maximum dosage allowed in hard cider: 275 ppm of potassium sorbate (200 ppm of sorbic acid)
 - Used in sweet ciders, if used at all
 - Flavor association & degradation
 - Sterile Filtration
 - If done properly, do not need a sorbate addition
 - Test filtration protocols

Stabilization of Hard Cider

- Hazes: try to prevent by properly treating juice pre-fementation
- Fining agents to treat hazes
 - Pectin: add double dose of pectic enzymes
 - Protein
 - Bentonite
 - Sparkoloid
 - Others...
- Haze may need identified by a certified lab

Stabilization of Hard Cider

- Problematic Ciders Faults Found in Ciders:
 - Hydrogen sulfide (H₂S)
 - Brettanomyces
 - Mousiness
 - Volatile Acidity
 - Oxidation

Additional Production Resources

- US Association for Cider Makers: <u>http://www.ciderassociation.org/</u>
- Cider & Perry Academy: <u>http://www.cider-academy.co.uk/</u> (Cornell & Washington Production Courses, annually)
- Wittenham Hill Cider Pages: <u>http://www.cider.org.uk</u>
- Penn State Wine Quality Improvement Short Course (Defect Identification & Remediation, annually in January): <u>http://www.cvent.com/d/z4qvqn</u>
- Hard Cider Production at Virginia Tech: <u>http://www.arec.vaes.vt.edu/alson-h-</u> <u>smith/treefruit/horticulture/hard-cider/</u>
- Hard Cider Production & Orchard Mgmt. in the Pacific Northwest: <u>https://pubs.wsu.edu/ItemDetail.aspx?ReturnTo=0&ProductID=15402</u>
- Fermentation Protocols for Washington State University: <u>http://extension.wsu.edu/maritimefruit/Documents/CiderFermentationProtocol2013.pdf</u>
- Cider Juice Protocol from Washington State University: <u>http://extension.wsu.edu/maritimefruit/Documents/CiderJuiceProtocol2013.pdf</u>
- Scott Labs Hard Cider Fermentation Protocol: <u>http://scottlab.com/uploads/documents/downloads/330/Cider.Perry%20Protocol.pdf</u>
- Scott Labs Hard Cider Handbook: <u>http://www.scottlab.com/pdf/2014CiderHandbook.pdf</u>
- The New Cider Maker's Handbook by Claude Jolicoeur (ISBN: 9781603584739)

Companies that Source Hard Cider Supplies in the Mid-Atlantic

- cidersupply.com
- Aftek (aftekfilters.com)
- ARS (arsenterprises.com)
- BSG (beveragesupplygroup.com)
- Enartis Vinquiry (enartisvinquiry.com)
- G&D (gdchillers.com)

- Kaufman Container Co. (kaufmancontainer.com)
- Laboratoires Standa (www.standa-fr.com)
- Oesco (oescoinc.com)
- Scott Labs (scottlab.com)
- Vin Table (vintable.com)
- Wine Tapa (winetapa.com)

Questions?

Denise M. Gardner,

Enology Extension Associate
Department of Food Science
217 Erikson Food Science Bldg.
University Park, PA 16802
Email: dxg241@psu.edu
Phone: 814-867-0431
Facebook: Penn State Extension Enology
Twitter: @WineNews4You
Blog: psuwineandgrapes.wordpress.com

